精英家教网 > 高中数学 > 题目详情
4.函数f(x)=ln(x2-1)的定义域为(  )
A.(0,+∞)B.(1,+∞)C.(-1,1)D.(-∞,-1)∪(1,+∞)

分析 直接由对数式的真数大于0求解一元二次不等式得答案.

解答 解:由x2-1>0,得x<-1或x>1.
∴函数f(x)=ln(x2-1)的定义域为(-∞,-1)∪(1,+∞).
故选:D.

点评 本题考查函数的定义域及其求法,考查了对数不等式的解法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=5+lnx,g(x)=$\frac{kx}{x+1}$(k∈R).
( I)若函数f(x)在点(1,f(1))处的切线与函数y=g(x)的图象相切,求k的值;
( II)若k∈N*,且x∈(1,+∞)时,恒有f(x)>g(x),求k的最大值.
(参考数据:ln5≈1.61,ln6≈1.7918,ln($\sqrt{2}$+1)=0.8814)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.若函数f(x)=$\frac{2x-5}{x-3}$的值域是[-4,2).
(1)作出函数图象;
(2)求f(x)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.将正三棱柱截去三个角(如图甲所示,A,B,C分别是三边的中点)得到几何图形乙.则该几何体的正视图为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,斜率为1的直线过抛物线y2=2px(p>0)的焦点,与抛物线交于两点A.B,将直线AB向左平移p个单位得到直线l,N为l上的动点.
(1)若|AB|=8,求抛物线的方程;
(2)在(1)的条件下,求$\overrightarrow{NA}$•$\overrightarrow{NB}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设Sn为数列{an}的前n项和,若a1=1,a2=2,a2n+1-a2n-1=2,a2n+2=2a2n,则当Sm=1122时,m=(  )
A.18B.19C.20D.21

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=$\sqrt{3}$,$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为30°,($\overrightarrow{a}$+2$\overrightarrow{b}$)∥(2$\overrightarrow{a}$+λ$\overrightarrow{b}$),则(($\overrightarrow{a}$+λ$\overrightarrow{b}$))•($\overrightarrow{a}$-$\overrightarrow{b}$)=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若α是锐角,且cos(α+$\frac{π}{6}$)=$\frac{\sqrt{6}}{3}$,则sinα的值等于(  )
A.$\frac{\sqrt{6}+3}{6}$B.-$\frac{\sqrt{6}-3}{6}$C.$\frac{2\sqrt{6}+1}{6}$D.$\frac{2\sqrt{6}-1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知Sn是等差数列{an}的前n项和,且S6>S7>S5,给出下列五个命题:
①d<0;②Sn>0;③S12<0;④数列{Sn}中的最大项为S11;⑤|a6|>|a7|.
其中正确命题的序号是:①⑤.

查看答案和解析>>

同步练习册答案