精英家教网 > 高中数学 > 题目详情
13.若α是锐角,且cos(α+$\frac{π}{6}$)=$\frac{\sqrt{6}}{3}$,则sinα的值等于(  )
A.$\frac{\sqrt{6}+3}{6}$B.-$\frac{\sqrt{6}-3}{6}$C.$\frac{2\sqrt{6}+1}{6}$D.$\frac{2\sqrt{6}-1}{6}$

分析 利用两角和与差的三角函数化简求解即可.

解答 解:α是锐角,且cos(α+$\frac{π}{6}$)=$\frac{\sqrt{3}}{6}$$\frac{\sqrt{6}}{3}$,
sin(α+$\frac{π}{6}$)=$\sqrt{1-(\frac{\sqrt{6}}{3})^{2}}$=$\frac{\sqrt{3}}{3}$.
sinα=sin((α+$\frac{π}{6}$)-$\frac{π}{6}$)=sin(α+$\frac{π}{6}$)cos$\frac{π}{6}$-cos(α+$\frac{π}{6}$)sin$\frac{π}{6}$=$\frac{\sqrt{3}}{3}×\frac{\sqrt{3}}{2}+\frac{\sqrt{6}}{3}×\frac{1}{2}$=$\frac{\sqrt{6}+3}{6}$.
故选:A.

点评 本题考查两角和与差的三角函数,三角函数的化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.直线x+y=2k-1被圆x2+y2=1截得的弦长为$\sqrt{2}$,则k=0或1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.函数f(x)=ln(x2-1)的定义域为(  )
A.(0,+∞)B.(1,+∞)C.(-1,1)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设{an}为公差小于零的等差数列,Sn为其前n项和,若S8=S12,则当n为何值时Sn最大(  )
A.8B.9C.10D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{1}{2}$,以原点为圆心,椭圆的短半轴长为半径的圆与直线$\sqrt{7}$x-$\sqrt{5}$y+12=0相切.
(1)求椭圆C的方程,
(2)设A(-4,0),过点R(3,0)作与x轴不重合的直线L交椭圆C于P,Q两点,连接AP,AQ分别交直线x=$\frac{16}{3}$于M,N两点,若直线MR、NR的斜率分别为k1,k2,试问:k1 k2是否为定值?若是,求出该定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$y=\left\{\begin{array}{l}{(x+2)^2},x<0\\ 4,x=0\\{(x-2)^2},x>0\end{array}\right.$,请画出一种程序框图,要求输入自变量x的值,输出函数值y.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知三棱锥A-BCD中,AB⊥面BCD,BC⊥CD,AB=BC=CD=2,则三棱锥A-BCD的外接球体积为4$\sqrt{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列函数中,在区间(0,1)上是增函数的是(  )
A.$y=\frac{1}{x}$B.y=|x|C.y=-x2+4D.y=3-x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.平行四边形ABCD中,对角线AC=$\sqrt{65},BD=\sqrt{17}$,周长为18,则这个平行四边形的面积是(  )
A.8B.18C.16D.32

查看答案和解析>>

同步练习册答案