| A. | $\sqrt{3}$ | B. | $\frac{2\sqrt{3}}{3}$ | C. | $\frac{\sqrt{6}}{2}$ | D. | 2$\sqrt{2}$ |
分析 设双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),渐近线方程为l1:y=$\frac{b}{a}$x,l2:y=-$\frac{b}{a}$x,由x=c代入l1的方程可得A的坐标;由两直线平行的条件可得直线FB的方程,联立直线l2的方程可得B的坐标,再由BA⊥l2,运用直线的斜率公式和垂直的条件:斜率之积为-1,结合离心率公式计算即可得到所求值.
解答
解:设双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0),
渐近线方程为l1:y=$\frac{b}{a}$x,l2:y=-$\frac{b}{a}$x,
由题意可设F(c,0),由AF⊥x轴,
令x=c,代入l1的方程可得y=$\frac{bc}{a}$,
即有A(c,$\frac{bc}{a}$),
过右焦点F作FB∥l1且交l2于点B,
由FB的方程y=$\frac{b}{a}$(x-c),联立直线l2:y=-$\frac{b}{a}$x,
解得B($\frac{c}{2}$,-$\frac{bc}{2a}$),
再由BA⊥l2,可得kAB=$\frac{a}{b}$,
即有$\frac{\frac{bc}{a}-(-\frac{bc}{2a})}{c-\frac{c}{2}}$=$\frac{a}{b}$,
化为a2=3b2,由b2=c2-a2,可得:
c2=$\frac{4}{3}$a2,由e=$\frac{c}{a}$可得e=$\frac{2\sqrt{3}}{3}$.
故选:B.
点评 本题考查双曲线的离心率的求法,注意运用双曲线的渐近线方程,直线平行和垂直的条件,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | a<1 | B. | a<$\sqrt{2}$ | C. | a≥1 | D. | a≥$\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若|m-3|≤2则m<5或m>1 | B. | 若|m-3|≤2则m≤5或m≥1 | ||
| C. | 若|m-3|>2则1<m<5 | D. | 若|m-3|>2则1≤m≤5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com