精英家教网 > 高中数学 > 题目详情
已知椭圆的中心在原点,焦点在x轴上,长轴长是短轴长的2倍且经过点M(2,1)平行于OM的直线l在y轴上的截距为m(m≠0),l交椭圆于A、B两个不同点.
(Ⅰ)求椭圆的方程;
(Ⅱ)求m的取值范围;
(Ⅲ)设直线MA、MB的斜率分别为k1,k2,求证k1+k2=0.
分析:(1)先设出椭圆的标准方程,根据题意联立方程组,求得a和b,椭圆的方程可得.
(2)由点斜式设出直线l的方程与椭圆方程联立消去y,根据判别式大于0求得k的范围.
(3)设A(x1,y1),B(x2,y2)由根据韦达定理,分别求得x1+x2和x1x2进而表示出k1和k2,进而可求得k1+k2
解答:解:(1)设椭圆方程为
x2
a2
+
y2
b2
=1
a=2b
4
a2
+
1
b2
=1
解得a2=8,b2=2
∴椭圆方程为
x2
8
+
y2
2
1

(2)∵直线l平行与OM,且在一轴上的截距为m,由kOM=
1
2

∴l的方程为y=
1
2
x+m
由直线方程与椭圆方程联立消去y得x2+2mx+2m2-4=0
∵直线l与椭圆交与A,B两个不同点
∴△=(2m)2-4(2m2-4)>0
解得-2<m<2,且m≠0
(3)设A(x1,y1),B(x2,y2
由x2+2mx+2m2-4=0可得
x1+x2=-2m,x1x2=2m2-4
则k1=
y1-1
x1-2
,k2=
y2-1
x 2 -2

而k1+k2=
y1-1
x1-2
+
y2-1
x 2 -2
=
(
1
2
x1+m-1)(x2-2)+(
1
2
x2+m-1)(x1-2) 
(x1-2)(x2-2)
=
2m2-4+(m-2)(-2m)-4(m-1)
(x1-2)(x2-2)
=0
∴k1+k2=0,
故得证.
点评:本题主要考查了椭圆的应用.考查了学生综合分析问题和解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,焦点在x轴上,离心率为
2
2
,且椭圆经过圆C:x2+y2-4x+2
2
y=0的圆心C.
(1)求椭圆的方程;
(2)设直线l过椭圆的焦点且与圆C相切,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点O,焦点在坐标轴上,直线y=2x+1与该椭圆相交于P和Q,且OP⊥OQ,|PQ|=
1011
,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,对称轴为坐标轴,左焦点为F1(-3,0),右准线方程为x=
253

(1)求椭圆的标准方程和离心率e;
(2)设P为椭圆上第一象限的点,F2为右焦点,若△PF1F2为直角三角形,求△PF1F2的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,且椭圆过点P(3,2),焦点在坐标轴上,长轴长是短轴长的3倍,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆的中心在原点,一个焦点F1(0,-2
2
),且离心率e满足:
2
3
,e,
4
3
成等比数列.
(1)求椭圆方程;
(2)直线y=x+1与椭圆交于点A,B.求△AOB的面积.

查看答案和解析>>

同步练习册答案