精英家教网 > 高中数学 > 题目详情

【题目】已知互不重合的直线,互不重合的平面,给出下列四个命题,错误的命题是(

A.,则

B.,则

C.,则

D.,则

【答案】D

【解析】

A:根据线面平行的性质定理进行判断即可;

B:利用平面法向量和面面垂直的性质进行判断即可;

C:利用线面垂直的判定定理进行判断即可;

D:根据线面关系进行判断即可.

A:过作一平面,与都相交,设,如下图所示:

则有,又,所以,所以,因此有,故本命题是真命题;

B:因为,所以向量是平面的法向量,而,所以,即,故本命题是真命题;

C:设,在平面内任意一点,作,如下图所示:由面面垂直的性质定理可知:,因为,所以有

又因为,所以,故本命题是真命题;

D:因为,所以,故本命题是假命题.

故选:D

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,有两个圆,其中为正常数,满足,一个动圆与两圆都相切,则动圆圆心的轨迹方程可以是(

A.两个椭圆B.两个双曲线

C.一个双曲线和一条直线D.一个椭圆和一个双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在棱长为2的正方体中,点P在正方体的对角线AB上,点Q在正方体的棱CD上,若P为动点,Q为动点,则PQ的最小值为_____.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一项针对都市熟男(三线以上城市,岁男性)消费水平的调查显示,对于最近一年内是否购买过以下七类高价商品,全体被调查者,以及其中包括的1980年及以后出生(80后)被调查者,1980年以前出生(80前)被调查者回答“是”的比例分别如下:

全体被调查者

80后被调查者

80前被调查者

电子产品

56.9%

66.0%

48.5%

服装

23.0%

24.9%

21.2%

手表

14.3%

19.4%

9.7%

运动、户外用品

10.4%

11.1%

9.7%

珠宝首饰

8.6%

10.8%

6.5%

箱包

8.1%

11.3%

5.1%

个护与化妆品

6.6%

6.0%

7.2%

以上皆无

25.3%

17.9%

32.1%

根据表格中数据判断,以下分析错误的是( )

A. 都市熟男购买比例最高的高价商品是电子产品

B. 从整体上看,80后购买高价商品的意愿高于80前

C. 80前超过3成一年内从未购买过表格中七类高价商品

D. 被调查的都市熟男中80后人数与80前人数的比例大约为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线的参数方程为为参数),为曲线上的一动点.

(I)求动点对应的参数从变动到时,线段所扫过的图形面积;

(Ⅱ)若直线与曲线的另一个交点为,是否存在点,使得为线段的中点?若存在,求出点坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,平面,且.

1)求证:

2)在线段,是否存在一点,使得二面角的大小为,如果存在,与平面所成角的正弦值;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题:①在圆柱的上、下底面的圆周上各取一点,则这两点的连线是圆柱的母线;②存在每个面都是直角三角形的四面体;③若三棱锥的三条侧棱两两垂直,则其三个侧面也两两垂直;④棱台的上、下底面可以不相似,但侧棱长一定相等.其中正确命题的个数是( )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,其中为参数,且.

(Ⅰ)当时,判断函数是否有极值;

(Ⅱ)要使函数的极小值大于零,求参数的取值范围;

(Ⅲ)若对(Ⅱ)中所求的取值范围内的任意函数,函数在区间内都是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】赵爽是我国古代数学家、天文学家大约在公元222年赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的)类比“赵爽弦图”,赵爽弦图可类似地构造如图所示的图形,它是由个3全等的等边三角形与中间的一个小等边三角形组成的一个大等边三角形,设DF2AF,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )

A. B. C. D.

查看答案和解析>>

同步练习册答案