【题目】已知函数
,其中
,
为参数,且
.
(Ⅰ)当
时,判断函数
是否有极值;
(Ⅱ)要使函数
的极小值大于零,求参数
的取值范围;
(Ⅲ)若对(Ⅱ)中所求的取值范围内的任意函数
,函数
在区间
内都是增函数,求实数
的取值范围.
【答案】(Ⅰ)无极值;(Ⅱ)
;(III)
.
【解析】
(I)当
时,
,
在
内是增函数,无极值;(II)令
,得
,可判断函数
在
处取得极小值
,解不等式
即可得结果;(III)由(II)知,函数
在区间
与
内都是增函数,则
须满足不等式组
或
,进而可得结果.
(I)当
时,
,则
在
内是增函数,
故无极值.
(II)
,令
,得
,
由
及(I)可知
无极值,
所以只需考虑
的情况,
当
变化时,
的符号及
的变化情况如下表:
|
| 0 |
|
|
|
| + | 0 | - | 0 | + |
| 递增 | 极大值 | 递减 | 极小值 | 递增 |
因此,函数
在
处取得极小值
且
,
要使
,必有
,
可得
,
.
(III)由(II)知,函数
在区间
与
内都是增函数,
由题设,函数
在
内是增函数,则
须满足不等式组,
或
,
由(II),参数
时,
,
要使不等式
关于参数
恒成立,必有
,
综上,解得
或
,
的取值范围是
.
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,且经过点P
,过它的左、右焦点
分别作直线l1和12.l1交椭圆于A.两点,l2交椭圆于C,D两点, 且![]()
![]()
(1)求椭圆的标准方程.
(2)求四边形ACBD的面积S的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在三棱锥
中,
,
,
两两互相垂直,
,点
,
分别在侧面
、棱
上运动,
,
为线段
中点,当
,
运动时,点
的轨迹把三棱锥
分成上、下两部分的体积之比等于( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4—4:坐标系与参数方程
平面直角坐标系xOy中,曲线C:
.直线l经过点P(m,0),且倾斜角为
.O为极点,以x轴正半轴为极轴,建立极坐标系.
(Ⅰ)写出曲线C的极坐标方程与直线l的参数方程;
(Ⅱ)若直线l与曲线C相交于A,B两点,且|PA|·|PB|=1,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,平面BPC⊥平面DPC,
,E,F分别是PC,AD的中点.
![]()
求证:(1)BE⊥CD;
(2)EF∥平面PAB.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在梯形
中,
,
,
,四边形
为矩形,平面
平面
,
.
![]()
(1)求证:
平面
;
(2)在线段
上是否存在点
,使得平面
与平面
所成锐二面角的平面角为
,且满足
?若不存在,请说明理由;若存在,求出
的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】产能利用率是指实际产出与生产能力的比率,工r产能利用率是衡量工业生产经营状况的重要指标.下图为国家统计局发布的2015年至2018年第2季度我国工业产能利用率的折线图.
![]()
在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2016年第二季度与2015年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2015年第二季度与2015年第一季度相比较.
据上述信息,下列结论中正确的是( ).
A. 2015年第三季度环比有所提高B. 2016年第一季度同比有所提高
C. 2017年第三季度同比有所提高D. 2018年第一季度环比有所提高
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com