精英家教网 > 高中数学 > 题目详情

【题目】产能利用率是指实际产出与生产能力的比率,工r产能利用率是衡量工业生产经营状况的重要指标.下图为国家统计局发布的2015年至2018年第2季度我国工业产能利用率的折线图.

在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2016年第二季度与2015年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2015年第二季度与2015年第一季度相比较.

据上述信息,下列结论中正确的是( ).

A. 2015年第三季度环比有所提高B. 2016年第一季度同比有所提高

C. 2017年第三季度同比有所提高D. 2018年第一季度环比有所提高

【答案】C

【解析】

根据同比和环比的定义比较两期数据得出结论.

解:2015年第二季度利用率为74.3%,第三季度利用率为74.0%,故2015年第三季度环比有所下降,故A错误;

2015年第一季度利用率为74.2%2016年第一季度利用率为72.9%,故2016年第一季度同比有所下降,故B错误;

2016年底三季度利用率率为73.2%2017年第三季度利用率为76.8%,故2017年第三季度同比有所提高,故C正确;

2017年第四季度利用率为78%2018年第一季度利用率为76.5%,故2018年第一季度环比有所下降,故D错误.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数,其中为参数,且.

(Ⅰ)当时,判断函数是否有极值;

(Ⅱ)要使函数的极小值大于零,求参数的取值范围;

(Ⅲ)若对(Ⅱ)中所求的取值范围内的任意函数,函数在区间内都是增函数,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】赵爽是我国古代数学家、天文学家大约在公元222年赵爽为《周碑算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形是由4个全等的直角三角形再加上中间的一个小正方形组成的)类比“赵爽弦图”,赵爽弦图可类似地构造如图所示的图形,它是由个3全等的等边三角形与中间的一个小等边三角形组成的一个大等边三角形,设DF2AF,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的顶点为原点,其焦点到直线的距离为.设为直线上的点,过点作抛物线的两条切线,其中为切点.

(1) 求抛物线的方程;

(2) 当点为直线上的定点时,求直线的方程;

(3) 当点在直线上移动时,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂两条生产线生产同款产品,若产品按照一、二、三等级分类,则每件可分别获利10元、8元、6元,现从生产线的产品中各随机抽取100件进行检测,结果统计如下图:

(1)根据已知数据,判断是否有99%的把握认为一等级产品与生产线有关?

(2)分别计算两条生产线抽样产品获利的方差,以此作为判断依据,说明哪条生产线的获利更稳定?

(3)估计该厂产量为2000件产品时的利润以及一等级产品的利润.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,过的直线与椭圆相交于两点.

(1)求 的周长;

(2)设点为椭圆的上顶点,点在第一象限,点在线段上.若,求点的横坐标;

(3)设直线不平行于坐标轴,点为点关于轴的对称点,直线轴交于点.求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l的参数方程为为参数,以坐标原点为极点,x轴的正半轴为极轴建建立极坐标系,曲线C的极坐标方程为

求曲线C的直角坐标方程与直线l的极坐标方程;

若直线与曲线C交于点不同于原点,与直线l交于点B,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ln(x2+1)﹣e﹣|x|(e为自然对数的底数),则不等式f(2x+1)>f(x)的解集是(  )

A. (﹣1,1)B. (﹣∞,﹣1)∪(1,+∞)

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知的定义域为,使得不等式成立,关于的不等式的解集记为.

(1)若为真,求实数的取值集合

(2)在(1)的条件下,若的充分不必要条件,求实数的取值范围.

查看答案和解析>>

同步练习册答案