(12分) 在直角坐标系中,点到点,的距离之和是,点的轨迹是,直线与轨迹交于不同的两点和.⑴求轨迹的方程;⑵是否存在常数,?若存在,求出的值;若不存在,请说明理由.
科目:高中数学 来源: 题型:解答题
(14分)在直角坐标系中椭圆:的左、右焦点分别为、.其中也是抛物线:的焦点,点为与在第一象限的交点,且.
(1)求的方程;(6分)
(2)平面上的点满足,直线∥,且与交于、两点,若,求直线的方程. (8分)
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)已知在平面直角坐标系中的一个椭圆,它的中心在原点,左焦点为,且过,设点.
(1)求该椭圆的标准方程;
(2)若是椭圆上的动点,求线段中点的轨迹方程;
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知,记点P的轨迹为E.
(1)求轨迹E的方程;
(2)设直线l过点F2且与轨迹E交于P、Q两点,若无论直线l绕点F2怎样转动,在x轴上总存在定点,使恒成立,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题11分)如图1,抛物线y=ax2+bx+c(a≠0)的顶点为(1,4),交x轴于A、B,交y轴于D,其中B点的坐标为(3,0)
(1)求抛物线的解析式
(2)如图2,过点A的直线与抛物线交于点E,交y轴于点F,其中E点的横坐标为2,若直线PQ为抛物线的对称轴,点G为PQ上一动点,则轴上是否存在一点H,使D、G、F、H四点围成的四边形周长最小.若存在,求出这个最小值及G、H的坐标;若不存在,请说明理由.
(3)如图3,抛物线上是否存在一点,过点作轴的垂线,垂足为,过点作直线,交线段于点,连接,使~,若存在,求出点的坐标;若不存在,说明理由.
图1 图2 图3
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知直线相交于A、B两点。
(1)若椭圆的离心率为,焦距为2,求椭圆的标准方程;
(2)若(其中O为坐标原点),当椭圆的离率时,求椭圆的长轴长的最大值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆、抛物线的焦点均在轴上,的中心和的顶点均为原点,从每条曲线上取两个点,将其坐标记录于下表中:
3 | 2 | 4 | ||
0 | 4 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com