精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C所对的边分别为a,b,c,且sinBcosC=2sinA-sinC)cosB.
(I)求B的大小;
(II)若b=2,a+c=4,求△ABC的面积.
(I)∵sinB+sinC=(2sinA-sinC)cosB
∴sinBcosC+cosBsinC=sin(B+C)=sinA=2sinAcosB
∵sinA≠0
∴cosB=
1
2

∵0<B<π,
∴∠B=
π
3

(II)由余弦定理cosB=
a2+c2-b2
2ac
=
1
2

把b=2代入上式得,a2+c2=(a+c)2-2ac=16-2ac
∴12-2ac=ac
∴ac=4
∴S=
1
2
acsinB=
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a,b,c,若b2+c2-a2=
3
bc
,且b=
3
a
,则下列关系一定不成立的是(  )
A、a=c
B、b=c
C、2a=c
D、a2+b2=c2

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别为a,b,c,已知B=60°,cos(B+C)=-
1114

(1)求cosC的值;
(2)若bcosC+acosB=5,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C的对边分别是a,b,c,且bsinA=
3
acosB

(1)求角B的大小;
(2)若a=4,c=3,D为BC的中点,求△ABC的面积及AD的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C所对的边分别为a、b、c并且满足
b
a
=
sinB
cosA

(1)求∠A的值;
(2)求用角B表示
2
sinB-cosC
,并求它的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对边的长分别为a,b,c,且a=
5
,b=3,sinC=2sinA
,则sinA=
 

查看答案和解析>>

同步练习册答案