精英家教网 > 高中数学 > 题目详情
已知一元二次方程x2-ax+1=0(a∈R),
(1)若x=
3
4
+
7
4
i是方程的根,求a的值;
(2)若x1,x2是方程两个虚根,且|x1-1|>|x2|,求a的取值范围.
考点:复数代数形式的混合运算
专题:数系的扩充和复数
分析:(1)利用实系数方程虚根成对,求出a.
(2)利用复数方程,求出x1,x2两个虚根,通过复数的模求解即可.
解答: 解:(1)已知一元二次方程x2-ax+1=0(a∈R),
若x=
3
4
+
7
4
i是方程的根,则x=
3
4
-
7
4
i也是方程的根.
3
4
+
7
4
i)+(
3
4
-
7
4
i)=
a
2
,解得a=
3
4

(2)x1,x2是方程x2-ax+1=0两个虚根,不妨x1=
a-
4-a2
i
2
,x2=
a+
4-a2
i
2
,a∈(-2,2)
|x1-1|>|x2|,
(
a
2
-1)
2
+(-
4-a2
2
)2>(
a
2
)2+(
4-a 
2
)2

∴a<1,
综上,-2<a<1.
点评:本题考查复数代数形式混合运算,复数方程的求法模的运算,考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=(a-x)(x-b)-3,m,n是方程f(x)=0的两个实根,其中a<b,m<n,则实数a,b,m,n的大小关系是(  )
A、a<m<b<n
B、m<a<n<b
C、m<a<b<n
D、a<m<n<b

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC是边长为2的等边三角形,在平面ABC所在平面上有一点P,M是AP的中点,满足(
AC
-
AM
)•(
AB
-
AP
)=0,则|
BM
|的最小值为(  )
A、
7
-
3
2
B、
3
-1
2
C、
3
2
D、
7
2

查看答案和解析>>

科目:高中数学 来源: 题型:

某自来水厂一蓄水池可以用甲、乙两个水泵注水,单开甲泵需15小时注满,单开乙泵需18小时注满,若要求10小时注满水池,并且使两泵同时开放的时间尽可能地少,则甲、乙两水泵同时开放的时间最少需(  )
A、4小时B、7小时
C、6小时D、14小时

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,已知A(1,0),B(0,1),点C在第一象限内,∠AOC=
π
6
,且|OC|=2,若
OC
OA
OB
,则λ,μ的值是(  )
A、
3
,1
B、1,
3
C、
3
3
,1
D、1,
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设Ox,Oy为平面内相交成60°角的两条数轴,
e1
e2
分别是与x轴、y轴正方向同向的单位向量,若向量
OP
=x
e1
+y
e2
,则把有序实数对(x,y)叫做向量
OP
在坐标系xOy中的坐标.已知P点的坐标为(1,1).
(Ⅰ)求|
OP
|;
(Ⅱ)过点P作直线l分别与x轴、y轴正方向交于点A,B,试确定A,B的位置,使△OAB的面积最小,并求出最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的首项a1=2,前n项和为Sn,且-a2,Sn,2an+1成等差数列,求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|ax>1(a≠0)},B={x|x2-1>0},若A⊆B,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=-
1
3
x3+x2+3x+a.
(1)求f(x)的单调区间;
(2)若f(x)在区间[-3,3]上的最小值为
7
3
,求a的值.

查看答案和解析>>

同步练习册答案