精英家教网 > 高中数学 > 题目详情
函数y=
x2+2x-3
的单调递减区间是(  )
A.(-∞,-3)B.(-1,+∞)C.(-∞,-1D.[-1,+∞)
令t=x2+2x-3,
对于函数y=
x2+2x-3
,有x2+2x-3≥0,解可得x≤-3或x≥1,即其定义域为{x|x≤-3或x≥1}
又由二次函数的性质,可得当x≤-3时,t=x2+2x-3为减函数,当x≥1时,t=x2+2x-3为增函数,
即当x≤-3时,函数y=
x2+2x-3
的单调递减,即函数y=
x2+2x-3
的单调递减区间为(-∞,-3],
分析选项,可得A在(-∞,-3]中,
故选A.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数y=x2-2x+5(x∈[-1,2])的最大值是
8
8
,最小值是
4
4

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=
x2-2x+1
的值域是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=x2+2x,x∈[-2,3],则值域为
[-1,15]
[-1,15]

查看答案和解析>>

科目:高中数学 来源: 题型:

集合A为函数y=
x-1
x2-3x+2
的定义域,集合B为函数y=
-x2+2x+4
的值域,则A∩B=
[0,1)∪(1,2)∪(2,
5
]
[0,1)∪(1,2)∪(2,
5
]

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x2+2x+3(x≥0)的值域为(  )

查看答案和解析>>

同步练习册答案