精英家教网 > 高中数学 > 题目详情
3.命题“?x∈[0,+∞),x2>3”的否定是?x∈[0,+∞),x2≤3.

分析 根据特称命题的否定是全称命题即可得到结论.

解答 解:命题为特称命题,
则命题的否定是全称命题,
则命题的否定为:?x∈[0,+∞),x2≤3;
故答案为:?x∈[0,+∞),x2≤3

点评 本题主要考查含有量词的命题的否定的命题否定,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.若集合A={x|y=$\sqrt{x-3}$},B={y|y=x2+2},则A∩B等于(  )
A.[3,+∞)B.(3,+∞)C.[2,+∞)D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.如果f(x)的定义域为R,对于定义域内的任意x,存在实数a使得f(x+a)=f(-x)成立,则称此函数具有“P(a)性质”,给出下列命题:
①函数y=sinx具有“P(a)性质”;
②若奇函数y=f(x)具有“P(2)性质”,且f(1)=1,则f(2015)=1;
③若不恒为零的函数y=f(x)同时具有“P(0)性质”和“P(3)性质”,则函数y=f(x)是周期函数;
④若函数y=f(x)具有“P(4)性质”,图象关于点(1,0)成中心对称,且在(-1,0)上单调递减,则y=f(x)在(-2,-1)上单调递减,在(1,2)上单调递增;
其中正确的是①③④(写出所有正确命题的编号).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设x∈R,则函数f(x)=$\sqrt{1+{{cos}^2}x}+\sqrt{1+{{sin}^2}x}$的值域是(  )
A.[1+$\sqrt{2}$,6]B.[$\sqrt{2}$,$\sqrt{6}$]C.[1,1+$\sqrt{2}$]D.[1,$\sqrt{6}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数z满足(1-i)z=3+5i,则复数z在复平面内对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.设函数f(x)是定义在R上周期为2的函数,且对任意的实数x,恒有f(x)-f(-x)=0,当x∈[-1,0],f(x)=x2e-(x+1),若g(x)=f(x)-logax在x∈(0,+∞)有且仅有三个零点,则实数a的取值范围为(3,5).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若log2014(x2-1)=0,则x=±$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.在0°~360°间,找出与下列各角终边相同的角,并判定它们是第几象限角:
(1)-150°;
(2)660°;
(3)950°12′.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数y=$\frac{a{x}^{2}-8x+b}{{x}^{2}+1}$的值域是[1,9],则a+b=10.

查看答案和解析>>

同步练习册答案