精英家教网 > 高中数学 > 题目详情
16.陈老师常说“不学习就没有出息”,这句话的意思是:“学习”是“有出息”的(  )
A.必要条件B.充分条件
C.充要条件D.既不充分也不必要条件

分析 根据互为逆否命题的真假一致得到:“有出息就学习”是真命题.再据命题的真假与条件的关系判定出“学习”是“有出息”的必要条件.

解答 解:“不学习就没出息”的逆否命题是”有出息就学习“,
所以“学习”是“有出息”的必要条件,
故选:A.

点评 本题考查互为逆否命题的真假一致;考查据命题的真假判定条件关系,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知数列{an}是公比为q的等比数列,且a1+2a2=3a3
(1)求q的值;
(2)设数列{bn}是首项为2,公差为q的等差数列,{bn}的前n项和为Tn.当n≥2时,试比较bn与Tn的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知f(x)=sinx-cosx-ax.
(1)若f(x)在$[{-\frac{π}{2},\frac{π}{2}}]$上单调,求实数a的取值范围;
(2)证明:当$a=\frac{2}{π}$时,f(x)≥-1在x∈[0,π]上恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x2+ax-lnx(a∈R).
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)令g(x)=f(x)-x2,是否存在实数a,当x∈(0,e]时,函数g(x)的最小值是3,若存在,求a的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在三棱锥P-ABC中,PA⊥平面ABC,AC⊥BC,D为侧棱PC的中点,它的正(主)视图和侧(左)视图如图所示.

(Ⅰ)求三棱锥P-ABD的体积.
(Ⅱ)在∠ACB的平分线所在直线上确定一点Q,使得PQ∥平面ABD,并求此时PQ的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知当x∈R,[x]表示不超过x的最大整数,称y=[x]为取整函数,例如[1.2]=1,[-2.3]=-3,若f(x)=[x],且偶函数g(x)=-(x-1)2+1(x≥0),则方程f(f(x))=g(x)的所有解之和为(  )
A.1B.-2C.$\sqrt{5}-3$D.$-\sqrt{5}-3$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.抛物线x2=4y的焦点为F,准线为l,经过F且倾斜角为$\frac{π}{6}$的直线与抛物线在y轴右侧的部分相交于点A,AK⊥l,垂足为K,则△AKF的面积是(  )
A.4B.$4\sqrt{3}$C.1D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列说法正确的是(  )
A.0与{x|x≤4且x≠±1}的意义相同
B.高一(1)班个子比较高的同学可以形成一个集合
C.集合A={(x,y)|3x+y=2,x∈N}是有限集
D.方程x2+2x+1=0的解集只有一个元素

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在平行四边形ABCD中,$\overrightarrow{AB}$•$\overrightarrow{BD}$=0,沿△ABD沿BD折起,使平面ABD⊥平面BCD,且2|$\overrightarrow{AB}$|2+|$\overrightarrow{BD}$|2=4,则三棱锥A-BCD的外接球的半径为(  )
A.1B.$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{4}$D.$\frac{1}{4}$

查看答案和解析>>

同步练习册答案