精英家教网 > 高中数学 > 题目详情
10.由下面样本数据利用最小二乘法求出的线性回归方程是$\widehat{y}$=0.7x+m,则实数m=0.35.
x3456
y2.5344.5

分析 求解得到样本中心点为(4.5,3.5),然后,将此代入方程,求解即可.

解答 解:由题意,$\overline{x}$=$\frac{1}{4}$(3+4+5+6)=4.5,$\overline{y}$=$\frac{1}{4}$(2.5+3+4+4.5)=3.5.
∴样本中心点为(4.5,3.5),
代入线性回归直线方程,得3.5=0.7×4.5+a,
∴a=0.35,
故答案为:0.35.

点评 本题重点考查了平均值的计算、线性回归直线方程及其求解等知识,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图,等腰直角三角形ACB中,∠ACB=90°,圆心O为AB的中点,AC切圆O于点D.
(I)证明:BC为圆O的切线;
(Ⅱ)连接BD,作CH⊥DB,H为垂足,作HF⊥BC,F为垂足,求$\frac{BF}{DH}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若(sinθ+cosθ)2=2x+2-x,θ∈(0,$\frac{π}{2}$),则$\frac{1}{sinθ}$=(  )
A.1B.$\frac{{\sqrt{3}}}{3}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设各项均为正数的数列{an}的前n项和为Sn,且Sn满足Sn2-(n2+n-2)Sn-2(n2+n)=0,n∈N*
(1)求a1的值;
(2)求数列{an}的通项公式;
(3)证明:对一切正整数n,有$\frac{{{a_1}+1}}{a_1}$×$\frac{{{a_2}+1}}{a_2}$×…×$\frac{{{a_n}+1}}{a_n}$>$\sqrt{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知直线l:x-y+2=0与圆C:x2+y2-2y-2m=0相离,则实数m的取值范围是(  )
A.(-∞,0)B.(-$\frac{1}{2}$,+∞)C.(-∞,-$\frac{1}{4}$)D.(-$\frac{1}{2}$,-$\frac{1}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列函数中,是奇函数且在其定义域内为单调函数的是(  )
A.y=$\frac{-1}{x}$B.y=$\left\{\begin{array}{l}{\sqrt{x},x≥0}\\{\sqrt{-x},x<0}\end{array}\right.$C.y=ex+e-xD.y=-x|x|

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知命题p:?x∈N*,3x2-2x+5>lnx,则¬p为(  )
A.?x∈N*,3x2-2x+5<lnxB.?x∈N*,3x2-2x+5≤lnx
C.?x∈N*,3x2-2x+5<lnxD.?x∈N*,3x2-2x+5≤lnx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.等差数列{an}前9项的和等于前4项的和.若a4+ak=0,则k=10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x4lnx-a(x4-1),a∈R.
(1)求曲线y=f(x)在点(1,f(1))处的切线方程;
(2)若当x≥1时,f(x)≥0恒成立,求实数a的取值范围;
(3)f(x)的极小值为φ(a),当a>0时,求证:$\frac{1}{4}({{e^{1-\frac{1}{4a}}}-{e^{4a-1}}})≤φ(a)<0$.(e=2.71828…为自然对数的底)

查看答案和解析>>

同步练习册答案