分析 (1)当n=1,代入Sn2-(n2+n-2)Sn-2(n2+n)=0,由数列{an}为正数,求得a1=2;
(2)将Sn2-(n2+n-2)Sn-2(n2+n)=0转化成,(Sn+2)[Sn-(n2+n)]=0,由Sn+2≠0,即可Sn=n2+n,当n≥2时,Sn-1=(n-1)2+(n-1),两式相减即可求得即可求得an=2n,由(1)可知,即可求得数列{an}的通项公式;
(3)由(2)可知,将an=2n代入,由$\frac{{{a_n}+1}}{a_n}$=$\frac{2n+1}{2n}$>$\sqrt{\frac{4{n}^{2}+4n}{4{n}^{2}}}$=$\sqrt{\frac{n+1}{n}}$,采用放缩法,即可求得$\frac{{{a_1}+1}}{a_1}$×$\frac{{{a_2}+1}}{a_2}$×…×$\frac{{{a_n}+1}}{a_n}$>$\sqrt{n+1}$.
解答 解:(1)当n=1时,a12-4=0,解得:a1=2或a1=-2,
∵数列{an}为正数,
∴a1=2…(2分)
(2)Sn2-(n2+n-2)Sn-2(n2+n)=0,
即(Sn+2)[Sn-(n2+n)]=0,
∵Sn+2≠0,
∴Sn=n2+n,
当n≥2时,Sn-1=(n-1)2+(n-1),
两式相减得:an=2n,
当n=1,满足an=2n,
∴an=2n…(8分)
(3)证明:$\frac{{{a_n}+1}}{a_n}$=$\frac{2n+1}{2n}$>$\sqrt{\frac{4{n}^{2}+4n}{4{n}^{2}}}$=$\sqrt{\frac{n+1}{n}}$,
$\frac{{{a_1}+1}}{a_1}$×$\frac{{{a_2}+1}}{a_2}$×…×$\frac{{{a_n}+1}}{a_n}$>$\sqrt{\frac{4×{1}^{2}+4×1}{4×{1}^{2}}}$×$\sqrt{\frac{4×{2}^{2}+4×2}{4×{2}^{2}}}$×$\sqrt{\frac{4×{3}^{2}+4×3}{4×{3}^{2}}}$×…×$\sqrt{\frac{4{n}^{2}+4n}{4{n}^{2}}}$
=$\sqrt{\frac{1+1}{1}}$×$\sqrt{\frac{2+1}{2}}$×$\sqrt{\frac{3+1}{3}}$×…×$\sqrt{\frac{n+1}{n}}$=$\sqrt{n+1}$.
∴$\frac{{{a_1}+1}}{a_1}$×$\frac{{{a_2}+1}}{a_2}$×…×$\frac{{{a_n}+1}}{a_n}$>$\sqrt{n+1}$.…(14分)
点评 本题考查利用递推公式求数列的通项公式,考查利用放缩法求不等式的证明,考查分析问题及解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | 5$\sqrt{2}$ | C. | 2$\sqrt{5}$ | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{1}{5}$i | C. | -$\frac{1}{3}$ | D. | -$\frac{1}{3}$i |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| x | 3 | 4 | 5 | 6 |
| y | 2.5 | 3 | 4 | 4.5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{10}$ | B. | 2$\sqrt{2}$ | C. | 4 | D. | $\frac{\sqrt{10}}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com