[2012·辽宁卷] 如图1-5,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N分别为A′B和B′C′的中点.
(1)证明:MN∥平面A′ACC′;
(2)求三棱锥A′-MNC的体积.
(锥体体积公式V=Sh,其中S为底面面积,h为高)
图1-5
解:(1)(证法一)
连结AB′,AC′,由已知∠BAC=90°,
AB=AC,三棱柱ABC-A′B′C′为直三棱柱,
所以M为AB′中点,
又因为N为B′C′的中点,所以MN∥AC′.
又MN⊄平面A′ACC′,
AC′⊂平面A′ACC′,
因此MN∥平面A′ACC′.
(证法二)
取A′B′中点P,连结MP,NP,
M、N分别为AB′与B′C′的中点,
所以MP∥AA′,PN∥A′C′,
所以MP∥平面A′ACC′,PN∥平面A′ACC′,
又MP∩NP=P,
因此平面MPN∥平面A′ACC′,而MN⊂平面MPN.
因此MN∥平面A′ACC′.
(2)(解法一)
连结BN,由题意A′N⊥B′C′,
平面A′B′C′∩平面B′BCC′=B′C′,
所以A′N⊥平面NBC.
又A′N=B′C′=1,故
VA′-MNC=VN-A′MC=VN-A′BC=VA′-NBC=.
(解法二)
VA′-MNC=VA′-NBC-VM-NBC=VA′-NBC=.
科目:高中数学 来源: 题型:
[2012·辽宁卷] 已知点P,A,B,C,D是球O表面上的点,PA⊥平面ABCD,四边形ABCD是边长为2的正方形,若PA=2,则△OAB的面积为________.
图1-4
查看答案和解析>>
科目:高中数学 来源: 题型:
[2012·辽宁卷] 如图1-5,直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N分别为A′B和B′C′的中点.
(1)证明:MN∥平面A′ACC′;
(2)求三棱锥A′-MNC的体积.
(锥体体积公式V=Sh,其中S为底面面积,h为高)
图1-5
查看答案和解析>>
科目:高中数学 来源: 题型:
(2012年高考辽宁卷理科20) (本小题满分12分)
如图,椭圆,动圆.点分别为的左、右顶点,与相交于四点
(1)求直线与直线交点的轨迹方程;
(2)设动圆与相交于四点,其中,.若矩形与矩形的面积相等,证明:为定值
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com