精英家教网 > 高中数学 > 题目详情
若关于x的不等式mx2-2(m+1)x+m+3>0的解集为R,则m的取值范围是
 
考点:二次函数的性质
专题:不等式的解法及应用
分析:分别讨论m=0和m≠0,利用mx2-2(m+1)x+m+3>0的解集为R,解出m的取值范围.
解答: 解:若m=0,则原不等式可化为-2x+3>0,
此时不等式的解集不为R.
∴m=0不成立,即m≠0.
若m≠0,要使不等式mx2-2(m+1)x+m+3>0的解集为R,
则m>0时,且△=4(m+1)2-4m(m+3)<0,
解得m>1.
故m的取值范围是(1,+∞)
故答案为:(1,+∞)
点评:本题主要考查一元二次不等式的基本解法,恒成立问题,要注意分类讨论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在平面直角坐标系xOy中,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,短轴长是2.
(1)求a,b的值;
(2)设椭圆C的下顶点为D,过点D作两条互相垂直的直线l1,l2,这两条直线与椭圆C的另一个交点分别为M,N.设l1的斜率为k(k≠0),△DMN的面积为S,当
S
|k|
16
9
时,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,已知⊙O的直径AB=4,点C、D为⊙O上两点,且∠CAB=45°,∠DAB=60°,F为弧BC的中点.将⊙O沿直径AB折起,使两个半圆所在平面互相垂直(如图2).
(Ⅰ)求证:OF∥AC;
(Ⅱ)在弧BD上是否存在点G,使得FG∥平面ACD?若存在,试指出点G的位置;若不存在,请说明理由;
(Ⅲ)求二面角C-AD-B的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,设O,I分别为△ABC的外心、内心,且∠B=60°,AB>BC,∠A的外角平分线交⊙O于D,已知AD=18,则OI=

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,则该几何体的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}为等差数列,首项a1=1,公差d≠0,若ak1ak2ak3,…,akn,…成等比数列,且k1=1,k2=2,k3=5,则数列{kn}的通项公式kn=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若存在实数x使以
2x+4
+
1-x
>a成立,则常数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若命题“a>3或a≤0”为假命题,则a的取值范围为:(0,3].

查看答案和解析>>

科目:高中数学 来源: 题型:

下列说法:
①必然事件的概率为1;
②如果某种彩票的中奖概率为
1
10
,那么买1000张这种彩票一定能中奖;
③某事件的概率为1.1;
④互斥事件一定是对立事件;
其中正确的说法是(  )
A、①②③④B、①C、③④D、①②

查看答案和解析>>

同步练习册答案