精英家教网 > 高中数学 > 题目详情
下列说法:
①必然事件的概率为1;
②如果某种彩票的中奖概率为
1
10
,那么买1000张这种彩票一定能中奖;
③某事件的概率为1.1;
④互斥事件一定是对立事件;
其中正确的说法是(  )
A、①②③④B、①C、③④D、①②
考点:概率的意义
专题:概率与统计
分析:根据事件的运算及概率的性质对四个说法进行验证即可得出正确的说法的个数,选出正确选项
解答: 解:①必然事件的概率为1;此说法是正确的;
②如果某种彩票的中奖概率为
1
10
,那么买1000张这种彩票一定能中奖;由概率的意义可知,每次购买彩票都是一次随机试验,买1000张彩票相当于1000次随机试验,可能会出现一张中奖的彩票也没有抽到的情况,故此说法是错误的;
③某事件的概率为1.1;概率的取值范围是[0,1],此说法是错误的;
④互斥事件一定是对立事件;由事件的定义知,对立事件一定是互斥事件,互斥事件不一定是对立事件,故此说法错误.
正确的说法仅有一个,
故选:B.
点评:本题考查概率的意义及事件的运算,属于基本概念题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若关于x的不等式mx2-2(m+1)x+m+3>0的解集为R,则m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题:
①四边形是平面图形;
②有三个共同点的两个平面重合;
③两两相交的三条直线必在同一平面内;
④三角形必是平面图形.
其中正确的命题是
 
(填写所有正确命题的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列四个命题,其中真命题为
 

①“?x0∈R,使得x02+1>3x0”的否定是“?x∈R,都有x2+1≤3x”;
②“m=-2”是“直线(m+2)x+my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的必要不充分条件;
③设圆x2+y2+Dx+Ey+F=0(D2+E2-4F>0)与坐标轴有4个交点,分别为A(x1,0),B(x2,0),C(0,y1),D(0,y2),则x1x2-y1y2=0;
④函数f(x)=sinx-x的零点个数有2个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+bx+c且f(1+x)=f(-x),则下列不等式中成立的是(  )
A、f(-2)<f(0)<f(2)
B、f(0)<f(-2)<f(2)
C、f(2)<f(0)<f(-2)
D、f(0)<f(2)<f(-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y满足约束条件
x+y-1≤0
3x-y+1≥0
x-y-1≤0
,若z=mx+y仅在点(1,0)处取得最大值,则实数m的取值范围是(  )
A、(1,+∞)
B、(-1,+∞)
C、(-∞,1)
D、(-∞,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是⊙O的直径,弦CD交AB于点P,PA=2,PC=6,PD=4,则AB等于(  )
A、3B、8C、12D、14

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a12
+
y2
b12
=1(a1>b1>0)与双曲线C2
x2
a22
-
y2
b22
=1(a2>0,b2>0)有相同的焦点F1,F2,点P是两曲线的一个公共点,a1,a2又分别是两曲线的离心率,若PF1⊥PF2,则4e12+e22的最小值为(  )
A、
5
2
B、4
C、
9
2
D、9

查看答案和解析>>

科目:高中数学 来源: 题型:

过点Q(4,1)作抛物线y2=8x的弦AB,恰被Q平分.
(1)求AB所在的直线方程.
(2)求弦AB的长.

查看答案和解析>>

同步练习册答案