分析 根据题意利用复合函数的单调性,二次函数、对数函数的性质,可得$\left\{\begin{array}{l}{{2}^{2}-2m+3m>0}\\{\frac{m}{2}≤2}\end{array}\right.$,由此求得m的范围.
解答 解:∵当2≤x1<x2时,都有f(x1)-f(x2)<0,
故函数f(x)在[2,+∞)上单调递减,
故由函数f(x)=log2(x2-mx+3m),
可得$\left\{\begin{array}{l}{{2}^{2}-2m+3m>0}\\{\frac{m}{2}≤2}\end{array}\right.$,求得-4<m≤4,
故答案为:(-4,4].
点评 本题主要考查复合函数的单调性,二次函数、对数函数的性质,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [-1,2] | B. | [-1,0] | C. | [1,2] | D. | [0,2] |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 5 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | c<b<a | B. | c<a<b | C. | b<a<c | D. | b<c<a |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $({\frac{1}{2},+∞})$ | B. | [1,2] | C. | $(\frac{1}{2},2]$ | D. | $(-\frac{1}{2},2]$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com