精英家教网 > 高中数学 > 题目详情
19.f(x)=xsinx+cosx;
(1)判断f(x)在区间(2,3)上的零点个数,并证明你的结论(参考数据:$\sqrt{2}≈1.4,\sqrt{6}$≈2.4)
(2)若存在$x∈({\frac{π}{4},\frac{π}{2}})$,使得f(x)>kx2+cosx成立,求实数k的取值范围.

分析 (1)求出函数的导数,求出函数的单调性,根据零点的判定定理证明即可;
(2)求出$k<\frac{sinx}{x}$. 令$h(x)=\frac{sinx}{x}$,求出函数的导数,根据函数的单调性求出k的范围即可.

解答 解:(1)f'(x)=sinx+xcosx-sinx=xcosx,
∴x∈(2,3)时,f'(x)=xcosx<0,
∴函数f(x)在(2,3)上是减函数.   …(2分)
又$f(2)=2sin2+cos2=sin2+cos2+sin2=\sqrt{2}sin(2+\frac{π}{4})+sin2>0$,…(4分)
∵$3sin3<3sin\frac{11π}{12}=3sin\frac{π}{12}=3sin(\frac{π}{3}-\frac{π}{4})=3×\frac{{\sqrt{6}-\sqrt{2}}}{4}≈0.75$,
$cos3<cos\frac{11π}{12}=-cos\frac{π}{12}=-cos(\frac{π}{3}-\frac{π}{4})=-\frac{{\sqrt{6}+\sqrt{2}}}{4}≈-0.95$,
∴f(3)=3sin3+cos3<0,
由零点存在性定理,f(x)在区间(2,3)上只有1个零点.…(6分)
(2)由题意等价于xsinx+cosx>kx2+cosx,
整理得$k<\frac{sinx}{x}$. …(7分)
令$h(x)=\frac{sinx}{x}$,则$h'(x)=\frac{xcosx-sinx}{x^2}$,
令g(x)=xcosx-sinx,g'(x)=-xsinx<0,
∴g(x)在$x∈(\frac{π}{4}\;,\;\;\frac{π}{2})$上单调递减,…(9分)
∴$g(x)<g(\frac{π}{4})=\frac{{\sqrt{2}}}{2}×(\frac{π}{4}-1)<0$,即g(x)=xcosx-sinx<0,
∴$h'(x)=\frac{xcosx-sinx}{x^2}<0$,即$h(x)=\frac{sinx}{x}$在$(\frac{π}{4}\;,\;\;\frac{π}{2})$上单调递减,…(11分)
∴$h(x)<\frac{{sin\frac{π}{4}}}{{\frac{π}{4}}}=\frac{{\frac{{\sqrt{2}}}{2}}}{{\frac{π}{4}}}=\frac{{2\sqrt{2}}}{π}$,
即$k<\frac{{2\sqrt{2}}}{π}$.   …(12分)

点评 本题考查了函数的零点判定定理,考查函数的单调性、最值问题,考查导数的应用,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设a=log0.32,b=ln2,c=5${\;}^{\frac{1}{2}}}$,则(  )
A.a<b<cB.b<c<aC.c<a<bD.c<b<a

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知集合A={1,2,3,a},B={3,a2},则使得(∁RA)∩B=∅成立的a的值的个数为(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.当圆锥的侧面积和底面积的比值是2时,圆锥轴截面的顶角等于(  )
A.45°B.60°C.90°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆C的中心在原点O,焦点在x轴上,离心率为$\frac{1}{2}$,椭圆C上的点到右焦点的最大距离为3.
(1)求椭圆C的标准方程.
(2)斜率存在的直线l与椭圆C交于A,B两点,并且满足以AB为直径的圆过原点,求直线在y轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合A={x|x2-4x+3≤0},集合B=$\left\{{x\left|{\frac{x-2}{x+1}>0}\right.}\right\}$,则A∪∁RB=(  )
A.[-1,3]B.[1,2]C.(-1,3]D.(-∞,-1)∪[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(1,1),则与$\overrightarrow{a}$+2$\overrightarrow{b}$方向相同的单位向量$\overrightarrow{e}$=($\frac{3}{5}$,$\frac{4}{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.函数f(x)=log2(x2-mx+3m)满足:对任意的实数x1,x2,当2≤x1<x2时,都有f(x1)-f(x2)<0,则m的取值范围是(-4,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+xy(x∈R),f(1)=1,则f(3)=(  )
A.-3B.3C.6D.-6

查看答案和解析>>

同步练习册答案