| A. | $({\frac{1}{2},+∞})$ | B. | [1,2] | C. | $(\frac{1}{2},2]$ | D. | $(-\frac{1}{2},2]$ |
分析 根据增函数定义及一次函数、二次函数的单调性即可由条件得到$\left\{\begin{array}{l}{2b-1>0}\\{\frac{2-b}{2}≥0}\\{(2b-1)•0+b-1≥-{0}^{2}+(2-b)•0}\end{array}\right.$,解该不等式组便可得出实数b的取值范围.
解答 解:f(x)在R为增函数;
∴$\left\{\begin{array}{l}{2b-1>0}\\{\frac{2-b}{2}≥0}\\{(2b-1)•0+b-1≥-{0}^{2}+(2-b)•0}\end{array}\right.$;
解得1≤b≤2;
∴实数b的取值范围是[1,2].
故选B.
点评 考查增函数的定义,分段函数单调性的判断,以及一次函数和二次函数的单调性.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -3 | B. | 3 | C. | 6 | D. | -6 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{20}$ | B. | $\frac{1}{10}$ | C. | 10 | D. | 20 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com