精英家教网 > 高中数学 > 题目详情
18.若函数f(x)=$\left\{\begin{array}{l}({2b-1})x+b-1,x>0\\-{x^2}+({2-b})x,x≤0\end{array}$,在R上为增函数,则实数b的取值范围是(  )
A.$({\frac{1}{2},+∞})$B.[1,2]C.$(\frac{1}{2},2]$D.$(-\frac{1}{2},2]$

分析 根据增函数定义及一次函数、二次函数的单调性即可由条件得到$\left\{\begin{array}{l}{2b-1>0}\\{\frac{2-b}{2}≥0}\\{(2b-1)•0+b-1≥-{0}^{2}+(2-b)•0}\end{array}\right.$,解该不等式组便可得出实数b的取值范围.

解答 解:f(x)在R为增函数;
∴$\left\{\begin{array}{l}{2b-1>0}\\{\frac{2-b}{2}≥0}\\{(2b-1)•0+b-1≥-{0}^{2}+(2-b)•0}\end{array}\right.$;
解得1≤b≤2;
∴实数b的取值范围是[1,2].
故选B.

点评 考查增函数的定义,分段函数单调性的判断,以及一次函数和二次函数的单调性.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.函数f(x)=log2(x2-mx+3m)满足:对任意的实数x1,x2,当2≤x1<x2时,都有f(x1)-f(x2)<0,则m的取值范围是(-4,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+xy(x∈R),f(1)=1,则f(3)=(  )
A.-3B.3C.6D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.公路陡坡警示牌如图所示,其中“3.8%”表示这段道路的横截面斜坡所在直线的斜率,这段斜坡的倾斜角的大小为arctan0.038度.(答案保留整数)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知c>0,设命题p:函数y=cx为减函数.命题q:?x∈[$\frac{1}{2}$,2],x+$\frac{1}{x}$>c.如果p∨q为真命题,p∧q为假命题,求实数c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.抛物线y2=2x的焦点坐标是($\frac{1}{2}$,0),准线方程是x=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.对于函数f(x)(x∈D),若存在正常数T,使得对任意的x∈D,都有f(x+T)≥f(x)成立,我们称函数f(x)为“T同比不减函数”.
(1)求证:对任意正常数T,f(x)=x2都不是“T同比不减函数”;
(2)若函数f(x)=kx+sinx是“$\frac{π}{2}$同比不减函数”,求k的取值范围;
(3)是否存在正常数T,使得函数f(x)=x+|x-1|-|x+1|为“T同比不减函数”;若存在,求T的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.数列{an}的通项公式${a_n}=n•{2^n}$,则其前9项和为8194.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知数列{an}为等差数列,Sn为前n项和,公差为d,若$\frac{{S}_{2017}}{2017}$-$\frac{{S}_{17}}{17}$=100,则d的值为(  )
A.$\frac{1}{20}$B.$\frac{1}{10}$C.10D.20

查看答案和解析>>

同步练习册答案