精英家教网 > 高中数学 > 题目详情


(本小题满分12分)
(1)求的定义域;
(2)问是否存在实数,当时,的值域为,且 若存在,求出的值,若不存在,说明理由.

解:(1)由
的定义域为
(2)令,又上为增函数。
时,的值取到一切正数等价于时,,①     又
由①②得

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知是定义在上的奇函数,且时,
(1)求
(2)求函数的表达式;
(3)若,求的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图是一个二次函数的图象.
(1)写出这个二次函数的零点;
(2)写出这个二次函数的解析式及时函数的值域

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;(2)若f(x)在区间[2aa+1]上不单调,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某租赁公司拥有汽车100辆.当每辆车的月租金为3 000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元.
(1)当每辆车的月租金定为3 600元时,能租出多少辆车?
(2)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知的反函数为.
(1)若,求的取值范围D;
(2)设函数,当时,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(12分)(2010·无锡模拟)已知f(x)在定义域(0,+∞)上为增函数,且满足f(xy)=f(x)+f(y),f(3)=1,试解不等式f(x)+f(x-8)≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

函数的图象如图所示,且处取得极值,给出下列判断:



③函数在区间上是增函数。
其中正确的判断是( )

A.①③B.②C.②③D.①②

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分14分)若定义在上的函数同时满足下列三个条件:
①对任意实数均有成立;

③当时,都有成立。
(1)求的值;
(2)求证:上的增函数
(3)求解关于的不等式.

查看答案和解析>>

同步练习册答案