精英家教网 > 高中数学 > 题目详情

(本题满分12分)二次函数f(x)的最小值为1,且f(0)=f(2)=3.
(1)求f(x)的解析式;(2)若f(x)在区间[2aa+1]上不单调,求a的取值范围.

解:(1)∵f(x)为二次函数且f(0)=f(2),∴对称轴为x=1.
又∵f(x)最小值为1,∴可设f(x)=a(x-1)2+1 (a>0)
f(0)=3,∴a=2,∴f(x)=2(x-1)2+1,即f(x)=2x2-4x+3.
(2)由条件知2a<1<a+1,∴0<a<.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(13分)定义在R上的增函数y=f(x)对任意x,yR都有f(x+y)=f(x)+f(y),则
(1)求f(0)       (2) 证明:f(x)为奇函数
(3)若对任意恒成立,求实数k的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某化工厂生产的某种化工产品,当年产量在150吨至250吨之间时,其生产的总成本(万元)与年产量(吨)之间的函数关系式近似地表示为.问:(1)每吨平均出厂价为16万元,年产量为多少吨时,可获得最大利润?并求出最大利润;
(2)年产量为多少吨时,每吨的平均成本最低?并求出最低成本。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分) 2010年11月在广州召开亚运会,某小商品公司开发一种亚运会纪念品,每件产品的成本是15元,销售价是20元,月平均销售a件,通过改进工艺,产品的成本不变,质量和技术含金量提高,市场分析的结果表明:如果产品的销售价提高的百分率为x(0<x<1),那么月平均销售量减少的百分率为x2,记改进工艺后,该公司销售纪念品的月平均利润是y(元).
(1)写出y与x的函数关系式;
(2)改进工艺后,确定该纪念品的售价,使该公司销售该纪念品的月平均利润最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)已知函数和点,过点作曲线的两条切线,切点分别为
(1)求证:为关于的方程的两根;
(2)设,求函数的表达式;
(3)在(2)的条件下,若在区间内总存在个实数(可以相同),使得不等式成立,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题


(本小题满分12分)
(1)求的定义域;
(2)问是否存在实数,当时,的值域为,且 若存在,求出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(理科)已知函数=x2-4x+a+3,g(x)=mx+5-2m.
(Ⅰ)若y=f(x)在[-1,1]上存在零点,求实数a的取值范围;
(Ⅱ)当a=0时,若对任意的x1∈[1,4],总存在x2∈[1,4],使f(x1)=g(x2)成立,求实数m的取值范围;
(Ⅲ)若函数y=f(x)(x∈[t,4])的值域为区间D,是否存在常数t,使区间D的长度为7-2t?若存在,求出t的值;若不存在,请说明理由(注:区间[p,q]的长度为q-p).

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

函数的定义域为开区间,导函数内的图象如图所示,则函数在开区间内有极小值点(  )

A.个 B.个 C.个 D.个 

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

试比较1.70.2 、log2.10.9与0.82.1的大小关系,并按照从小到大的顺序排列为   

查看答案和解析>>

同步练习册答案