| A. | n为任何正整数都成立 | B. | 仅当n=1,2,3时成立 | ||
| C. | 当n=4时成立,n=5时不成立 | D. | 仅当n=4时不成立 |
分析 验证当n=1,2,3,4,5时,等式是否成立,从而即可解决问题.
解答 解:当n=1时,左边=1,右边=1,成立;
当n=2时,左边=1+4=5,右边=5,成立;
当n=3时,左边=1+4+9=14,右边=14,成立;
当n=4时,左边=1+4+9+16=40,右边=28,不成立;
当n=5时,左边=1+4+9+16+25=65,右边=94,不成立;
故选:B.
点评 本题主要考查数学归纳法,数学归纳法的基本形式:设P(n)是关于自然数n的命题,若1°P(n0)成立(奠基);2°假设P(k)成立(k≥n0),可以推出P(k+1)成立(归纳),则P(n)对一切大于等于n0的自然数n都成立.
科目:高中数学 来源: 题型:选择题
| A. | (2,+∞) | B. | ($\sqrt{5}$,+∞) | C. | (1,2) | D. | (1,$\sqrt{5}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 资金 | 每台空调或冰箱所需资金 (百元) | 每天资金最多供应量 (百元) | |
| 空调 | 冰箱 | ||
| 进货成本 | 30 | 10 | 90 |
| 工人工资 | 5 | 10 | 40 |
| 每台利润 | 2 | 3 | |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(sin$\frac{2π}{3}$)>f(sin$\frac{π}{6}$) | B. | f(sin$\frac{2π}{3}$)<f(cos$\frac{2π}{3}$) | C. | f(cos$\frac{π}{3}$)>f(cos$\frac{π}{4}$) | D. | f(tan$\frac{π}{3}$)<f(tan$\frac{2π}{3}$) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{16}{5}$ | B. | $\frac{12}{5}$ | C. | $\frac{8}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com