精英家教网 > 高中数学 > 题目详情
在△ABC中,角A,B,C的对边分别为a,b,c,且a<b<c,
3
a=2bsinA.
(Ⅰ)求角B的大小;
(Ⅱ)若a=2,b=
7
,求c边的长和△ABC的面积.
考点:正弦定理,余弦定理
专题:三角函数的求值
分析:(Ⅰ)已知等式利用正弦定理化简,根据sinA不为0求出sinB的值,即可确定出角B的大小;
(Ⅱ)由a,b,cosB的值,利用余弦定理求出c的值,再由a,c,sinB的值,利用三角形面积公式即可求出△ABC的面积.
解答: 解:(Ⅰ)∵
3
a=2bsinA,
3
sinA=2sinAsinB,
∵0<A<π,∴sinA≠0,
∴sinB=
3
2

∵0<B<π,且a<b<c,
∴B=60°;
(Ⅱ)∵a=2,b=
7
,cosB=
1
2

∴由余弦定理得:(
7
2=22+c2-2×2×c×
1
2
,即c2-2c-3=0,
解得:c=3或c=-1(舍),
∴c=3,
则S△ABC=
1
2
acsinB=
1
2
×2×3×
3
2
=
3
3
2
点评:此题考查了正弦、余弦定理,以及三角形的面积公式,熟练掌握定理及公式是解本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

为了了解广东人的生活幸福指数,对40到60岁中年人一天的运动时间(单位:t),现随机地选出50名做调查,下表是一天运动时间频率分布表:
序号(i) 分组 组中值(Gi 频数 频率(Fi
1 [0,1) 0.5 6 0.12
2 [1,2) 1.5 10 0.2
3 [2,3) 2.5 20 0.4
4 [3,4) 3.5 10 0.2
5 [4,5] 4.5 4 0.08
在上述统计数据的分析中,一部分计算见算法流程图,则输出的S的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知B、C是以原点O为圆心,半径为1的圆与x轴的交点,点A在劣弧
PQ
(包含端点)上运动,其中∠POx=60°,OP⊥OQ,作AH⊥BC于H.若记
AH
=x
AB
+y
AC
,则xy的取值范围是(  )
A、(0,
1
4
]
B、[
1
16
1
4
]
C、[
1
16
3
16
]
D、[
3
16
1
4
]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a|x-8|+b(7≤x≤10)(a>0)的值域是[-1,4],求f(x)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知三棱柱ABC-A1B1C1的侧棱长和底面边长均为2,A1在底面ABC内的射影O为底面△ABC的中心,如图所示:
(1)连结BC1,求异面直线AA1与BC1所成角的大小;
(2)连结A1C、A1B,求三棱锥C1-BCA1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是公差不等于0的等差数列,{bn}是等比数列(n∈N+),且a1=b1>0.
(Ⅰ)若a3=b3,比较a2与b2的大小关系;
(Ⅱ)若a2=b2,a4=b4
(ⅰ)判断b10是否为数列{an}中的某一项,并请说明理由;
(ⅱ)若bm是数列{an}中的某一项,写出正整数m的集合(不必说明理由).

查看答案和解析>>

科目:高中数学 来源: 题型:

由于雾霾日趋严重,政府号召市民乘公交出行.但公交车的数量太多会造成资源的浪费,太少又难以满足乘客需求.为此,某市公交公司在某站台的60名候车乘客中进行随机抽样,共抽取10人进行调查反馈,所选乘客情况如下表所示:
组别 候车时间(单位:min) 人数
[0,5) 1
[5,10) 5
[10,15) 3
[15,20) 1
(1)估计这60名乘客中候车时间少于10分钟的人数;
(2)现从这10人中随机取3人,求至少有一人来自第二组的概率;
(3)现从这10人中随机抽取3人进行问卷调查,设这3个人共来自X个组,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线y=mx与函数f(x)=
2-(
1
3
)
x
 
,x≤0
1
2
x
2
 
+1,x>0.
的图象恰好有3个不同的公共点,则实数m的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设全集U=R,集合A={x|2x>1},B={x|-1≤x≤5},则(∁UA)∩B等于(  )
A、[-1,0)
B、(0,5]
C、[-1,0]
D、[0,5]

查看答案和解析>>

同步练习册答案