精英家教网 > 高中数学 > 题目详情
已知f(x)=2sin(2x+
π
6
)+a+1(a为常数),若f(x)在[-
π
6
π
6
]上最大值与最小值之和为3,求a的值.
考点:正弦函数的图象
专题:三角函数的图像与性质
分析:根据三角函数的图象和性质,求出函数的最大值和最小值即可得到结论.
解答: 解:∵-
π
6
≤x≤
π
6

∴-
π
6
≤2x+
π
6
π
2

则-
1
2
≤sin(2x+
π
6
)≤1,
即函数f(x)的最大值为2+a+1=a+3,最小值-1+a+1=a,
则由a+3+a=3,解得a=0.
点评:本题主要考查三角函数的图象和性质,利用三角函数图象和性质求出函数的最值即可得到结论.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(-1,2),
b
=(10,5),则
a
b
(  )
A、垂直B、平行
C、相交但不垂直D、无法判断

查看答案和解析>>

科目:高中数学 来源: 题型:

我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准?用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了 100位居民某年的月均用水量(单位:t),制作了频率分布直方图,
(Ⅰ)由于某种原因频率分布直方图部分数据丢失,请在图中将其补充完整;
(Ⅱ)用样本估计总体,如果希望80%的居民每月的用水量不超出标准,则月均用水量的最低标准定为多少吨,并说明理由;
(Ⅲ)若将频率视为概率,现从该市某大型生活社区随机调查3位居民的月均用水量(看作有放回的抽样),其中月均用水量不超过(Ⅱ)中最低标准的人数为x,求x的分布列和均值.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两袋装有大小相同的红球和白球,甲袋装有2个红球,2个白球;乙袋装有2个红球,n个白球.从甲,乙两袋中各任取2个球.
(Ⅰ)当n=1时,记取到的4个球中是白球的个数为ξ,求ξ的分布列和期望;
(Ⅱ)若取到的4个球中至少有2个红球的概率为
3
4
,求n.

查看答案和解析>>

科目:高中数学 来源: 题型:

《保护法》规定食品的汞含量不得超过1.00ppm.现从一批罗非鱼中随机地抽出15条作样本,检测得各条鱼的汞含量的茎叶图(以小数点前一位数字为茎,小数点前一位数字为叶)如图所示:

(l)若某检查人员从这15条鱼中,随机地抽出3条,求恰有1条鱼汞含量超标的概率;
(2)以此15条鱼的样本数据来估计这批鱼的总体数据.若从这批鱼中任选3条鱼,记ξ表示抽到的鱼汞含量超标的条数,求ξ的分布列及数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

若一个数列的奇数项与偶数项分别都成等比数列,则称该数列为“亚等比数列”,已知数列{an}:an=2 [
n
2
]
,n∈N*其中[x]为x的整数部分,如[5.9]=5,[-1.3]=-2
(1)求证:{an}为“亚等比数列”,并写出通项公式;
(2)求{an}的前2014项和S2014

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的首项a1=3,若对于任意的正整数n都有an+1=2an+3.
(1)设bn=an+3,求证:数列{bn}是等比数列;
(2)求数列{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动圆过点F(-5,0)且与定圆x2+y2-10x-11=0相外切,求动圆圆心的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

过x轴上动点A(a,0),引抛物线y=x2+3的两条切线AP、AQ,切点分别为P、Q.
(Ⅰ)若a=-1,求直线PQ的方程;
(Ⅱ)探究直线PQ是否经过定点,若有,请求出定点的坐标;否则,请说明理由.

查看答案和解析>>

同步练习册答案