设函数
是定义在
上的函数,并且满足下面三个条件:(1)对正数x、y都有
;(2)当
时,
;(3)
。则
(Ⅰ)求
和
的值;
(Ⅱ)如果不等式
成立,求x的取值范围.
(Ⅲ)如果存在正数k,使不等式
有解,求正数
的取值范围.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题分A,B类,满分12分,任选一类,若两类都选,以A类记分)
(A类)已知函数
的图象恒过定点
,且点
又在函
数
的图象.
(1)求实数
的值; (2)解不等式![]()
;
(3)
有两个不等实根时,求
的取值范围.
(B类)设
是定义在
上的函数,对任意
,恒有
.
⑴求
的值; ⑵求证:
为奇函数;
⑶若函数
是
上的增函数,已知
且
,求
的
取值范围.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年江苏省徐州三中高三(上)月考数学试卷(解析版) 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com