精英家教网 > 高中数学 > 题目详情
6.如图,在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,E、F、G分别为线段BC、PA、AB上的点,H为△PCD的重心,PA=AB=3,FA=BG=CE=1.
(1)求证:BF∥平面PDE;
(2)求异面直线GH与PE所成角的余弦值.

分析 (1)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能证明BF∥平面PDE.
(2)求出$\overrightarrow{GH}$,$\overrightarrow{PE}$,利用向量法能求出异面直线GH与PE所成角的余弦值.

解答 证明:(1以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,
B(3,0,0),F(0,0,1),P(0,0,3),E(3,2,0),D(0,3,0),
$\overrightarrow{BF}$=(-3,0,1),$\overrightarrow{PD}$=(0,3,-3),$\overrightarrow{PE}$=(3,2,-3),
设平面PDE的法向量为$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PD}=3y-3z=0}\\{\overrightarrow{n}•\overrightarrow{PE}=3x+2y-3z=0}\end{array}\right.$,取y=3,得$\overrightarrow{n}$=(1,3,3),
∵$\overrightarrow{BF}•\overrightarrow{n}$=-3+0+3=0,BF?平面PDE,∴BF∥平面PDE.
(2)C(3,3,0),G(2,0,0),CD中点M($\frac{3}{2}$,3,0),$\overrightarrow{PM}$=($\frac{3}{2},3,-3$),
∴$\overrightarrow{PH}$=$\frac{2}{3}\overrightarrow{PM}$=(1,2,-2),∴H(1,2,1),
$\overrightarrow{GH}$=(-1,2,1),$\overrightarrow{PE}$=(3,2,-3),
设异面直线GH与PE所成角为θ,
则cosθ=$\frac{|\overrightarrow{GH}•\overrightarrow{PE}|}{|\overrightarrow{GH}|•|\overrightarrow{PE}|}$=$\frac{2}{\sqrt{6}•\sqrt{22}}$=$\frac{\sqrt{33}}{33}$.
∴异面直线GH与PE所成角的余弦值为$\frac{\sqrt{33}}{33}$.

点评 本题考查线面平行的证明,考查异面直线所成角的余弦值的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow{a}$=(-3cosα,2)与向量$\overrightarrow{b}$=(3,-4sinα)平行,则锐角α等于(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.对两个具有相关关系的变量进行研究时,首先要画出这两个变量的(  )
A.结构图B.散点图C.等高条形图D.残差图

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若直线y=kx与椭圆$\frac{{x}^{2}}{3}$+y2=1交于A,B两点,在直线x+y-3=0上存在点C,使得△ABC为等边三角形,则k=-1或0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆C的圆心在直线x=2上,并且与y轴交于两点A(0,-4)、B(0,-2),求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若集合A={y|y=x2+2x+3},集合B={y|y=x+$\frac{4}{x}$},则A∩B=[4,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}满足:a1=2,an+an-1=4n-2(n≥2)
(1)求数列{an}的通项公式;
(2)若数列{bn}满足:b1+3b2+7b3+…+(2n-1)bn=an,证明:数列{bn}的前n项和Sn<4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,平面PAC⊥平面ABCD,DA=AB=BC=$\frac{1}{2}$CD=1.AB∥DC,∠CPD=90°.
(1)证明:平面PAD⊥平面PCD;
(2)若二面角A-PC-D的大小为45°.求CP.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线Γ:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左顶点为M,第二象限的点P,Q在双曲线的某条渐近线上,且$\overrightarrow{OP}$=$\frac{1}{3}$$\overrightarrow{OQ}$,若△MPQ为等边三角形,则双曲线的渐近线方程为(  )
A.y=±$\frac{\sqrt{2}}{2}$xB.y=±$\frac{\sqrt{3}}{2}$xC.y=$±\sqrt{3}$xD.y=±2x

查看答案和解析>>

同步练习册答案