精英家教网 > 高中数学 > 题目详情
18.已知数列{an}满足:a1=2,an+an-1=4n-2(n≥2)
(1)求数列{an}的通项公式;
(2)若数列{bn}满足:b1+3b2+7b3+…+(2n-1)bn=an,证明:数列{bn}的前n项和Sn<4.

分析 (1)由已知得(an-2n)+(an-1-2n+2)=0,令an-2n=bn,则bn+bn-1=0,由此能求出an=2n.
(2)由${b_1}+3{b_2}+7{b_3}+…+({2^n}-1){b_n}={a_n}$,推导出(2n-1)bn=an-an-1=2,从而${b_n}=\frac{2}{{{2^n}-1}}$,由此能证明数列{bn}的前n项和Sn<4.

解答 解:(1)∵an+an-1=4n-2(n≥2),
∴(an-2n)+(an-1-2n+2)=0,
令an-2n=bn,则bn+bn-1=0,且b1=a1-2=0,
由bn=-bn-1,b1=0,知bn=0,
∴an=2n.…(6分)
证明:(2)由${b_1}+3{b_2}+7{b_3}+…+({2^n}-1){b_n}={a_n}$,
知${b_1}+3{b_2}+7{b_3}+…+({2^{n-1}}-1){b_n}={a_{n-1}}(n≥2)$,
两式做差可得:(2n-1)bn=an-an-1=2,
∴${b_n}=\frac{2}{{({2^n}-1)}}(n≥2)$,
当n=1时b1=a1=2也满足上式.
∴${b_n}=\frac{2}{{{2^n}-1}}$.…(9分)
当n≥2时,2n-1>2n-1
Sn=$\frac{2}{2-1}+\frac{2}{{2}^{2}-1}+\frac{2}{{2}^{3}-1}$+…+$\frac{2}{{2}^{n}-1}$
<2+$\frac{2}{2}+\frac{2}{{2}^{2}}+…+\frac{2}{{2}^{n-1}}$
=3+$\frac{\frac{1}{2}(1-\frac{1}{{2}^{n-2}})}{1-\frac{1}{2}}$
=4-$\frac{1}{{2}^{n-2}}$<4.
∴数列{bn}的前n项和Sn<4.…(12分)

点评 本题考查数列的通项公式的求法,考查数列的前n项和的求法,是中档题,解题时要认真审题,注意构造法和放缩法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知复数z=$\frac{1}{i-1}$,则(  )
A.z的实部为$\frac{1}{2}$B.z的虚部为-$\frac{1}{2}$i
C.|z|=$\frac{\sqrt{2}}{2}$D.z的共轭复数为$\frac{1}{2}$+$\frac{1}{2}$i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.(Ⅰ)已知x2-y2+2xyi=2i,求实数x、y的值;
(Ⅱ)关于x的方程3x2-$\frac{a}{2}$x-1=(10-x-2x2)i有实根,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在四棱锥P-ABCD中,底面ABCD是正方形,PA⊥底面ABCD,E、F、G分别为线段BC、PA、AB上的点,H为△PCD的重心,PA=AB=3,FA=BG=CE=1.
(1)求证:BF∥平面PDE;
(2)求异面直线GH与PE所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知y=f(x)是奇函数,若g(x)=f(x)-1且g(1)=0,则g(-1)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设袋中有4只白球和2只黑球,现从袋中无放回地摸出2个球.
(1)求这两只球都是白球的概率.
(2)求这两只球中一只是白球另一只是黑球的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.从1,2,3,…,7共7个数字中任取3个不同的数字,则这3个数字由小到大可组成等差数列的概率为(  )
A.$\frac{11}{35}$B.$\frac{9}{35}$C.$\frac{1}{5}$D.$\frac{1}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,过椭圆C的左焦点F且倾斜角为60°的直线与圆x2+y2=$\frac{{b}^{2}}{{a}^{2}}$相切.
(I)求椭圆C的方程;
(Ⅱ)若直线l:y=kx+m与椭圆C相交于M,N两点(M,N不是左、右顶点),若以MN为直径的圆恰好过椭圆C的右顶点A,O为坐标原点,若点P满足2$\overrightarrow{OP}$=$\overrightarrow{OM}$+$\overrightarrow{ON}$,求直线AP的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如果在四棱锥P-ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD为正三角形,其所在平面垂直于底面ABCD,G为AD边的中点,求证:BG⊥PA.

查看答案和解析>>

同步练习册答案