精英家教网 > 高中数学 > 题目详情
13.已知y=f(x)是奇函数,若g(x)=f(x)-1且g(1)=0,则g(-1)=-2.

分析 根据函数奇偶性的性质建立方程关系进行求解即可.

解答 解:∵y=f(x)是奇函数,若g(x)=f(x)-1且g(1)=0,
∴g(1)=f(1)-1=0,则f(1)=1,
g(-1)=f(-1)-1=-f(1)-1=-1-1=-2,
故答案为:-2.

点评 本题主要考查函数值的计算,根据函数奇偶性的定义建立方程关系是解决本题的关键.比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.在区间(0,3)上任取一个实数a,则不等式log2(4a-1)<0成立的概率是(  )
A.$\frac{1}{4}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知M=sin100°-cos100°,N=$\sqrt{2}$(cos46°•cos78°+cos44°•cos12°),P=$\frac{1-tan10°}{1+tan10°}$,Q=$\frac{tan22°+tan23°}{1-tan22°tan23°}$,那么M,N,P,Q之间的大小顺序是(  )
A.M<N<P<QB.P<Q<M<NC.N<M<Q<PD.Q<P<N<M

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知圆C的圆心在直线x=2上,并且与y轴交于两点A(0,-4)、B(0,-2),求圆C的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=b•ax(其中a,b为正实数且a≠1)的图象经过点A(1,27),B(-1,3)
(1)试求a、b的值;
(2)若不等式ax+bx≥m在x∈[1,+∞)时恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知数列{an}满足:a1=2,an+an-1=4n-2(n≥2)
(1)求数列{an}的通项公式;
(2)若数列{bn}满足:b1+3b2+7b3+…+(2n-1)bn=an,证明:数列{bn}的前n项和Sn<4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在梯形ABCD中,已知AD∥BC,AD=1,BD=2$\sqrt{10}$,∠CAD=$\frac{π}{4}$,tan∠ADC=-2,求:
(1)CD的长;
(2)△BCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设$\overrightarrow{a}$=(-1,3,2),$\overrightarrow{b}$=(2,-3,-4),$\overrightarrow{c}$=(-3,12,6),证明三向量$\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$共面,并用$\overrightarrow{a}$和$\overrightarrow{b}$表示$\overrightarrow{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知数列{an}满足a1=1,an+1-an=2n+2n,则{an}的通项公式为an=2n+n2-n-1.

查看答案和解析>>

同步练习册答案