精英家教网 > 高中数学 > 题目详情
8.已知函数f(x)=b•ax(其中a,b为正实数且a≠1)的图象经过点A(1,27),B(-1,3)
(1)试求a、b的值;
(2)若不等式ax+bx≥m在x∈[1,+∞)时恒成立,求实数m的取值范围.

分析 (1)根据点A、B在图象列出方程组,求出a、b的值;
(2)由(1)可得m≤3x+9x,令u(x)=3x+9x,由指数函数的单调性判断出函数u(x)在[1,+∞)上单调性,求出u(x)min,由恒成立求出实数m的取值范围.

解答 解:(1)由已知可得,$\left\{\begin{array}{l}{b•a=27}\\{\frac{b}{a}=3}\end{array}\right.$,
解得a=3,b=9…(4分)
(2)由(1)可得m≤3x+9x,x∈[1,+∞),
令u=(x)3x+9x,x∈[1,+∞),只需m≤umin…(6分),
因为函数u(x)=3x+9x在[1,+∞)为单调增函数,…(9分)
所以u(x)min=12,
即实数m的取值范围是:{m|m≤12}.…(12分)

点评 本题考查待定系数法求函数的解析式,指数函数的单调性,以及恒成立问题的转化,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.将函数f(x)=Asin(ωx)(A≠0,ω>0)的图象向左平移$\frac{π}{6}$个单位,得到的图象关于原点对称,则ω的值可以为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知i是虚数单位,则i2016=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0),A(0,-b),B(0,b),P为双曲线上的一点,且|AB|=|BP|,则双曲线离心率的取值范围是(  )
A.[$\sqrt{2}$,+∞)B.(1,$\frac{\sqrt{5}}{2}$]C.[$\frac{\sqrt{5}+1}{2}$,+∞)D.[$\frac{\sqrt{10}+\sqrt{2}}{4}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0),右焦点F($\sqrt{2}$,0),点D($\sqrt{2}$,1)在椭圆上
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知直线l:y=kx与椭圆C交于A,B两点,P为椭圆C上异于A,B的动点;若直线PA,PB的斜率都存在,判断kPA•kPB是否为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知y=f(x)是奇函数,若g(x)=f(x)-1且g(1)=0,则g(-1)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知事件“在矩形ABCD的边CD上随机取一点P,使△APB的最大边是AB”发生的概率为$\frac{3}{5}$,则$\frac{AD}{AB}$=(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知定义在R上的奇函数f(x)满足f(x+1)=f(1-x),且当x∈[0,1]时,f(x)=log2(x+1),则f(31)=(  )
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数z=$\frac{5{i}^{5}}{2-{i}^{3}}$-3i,则|z|等于(  )
A.2$\sqrt{2}$B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

同步练习册答案