分析 (1)根据点A、B在图象列出方程组,求出a、b的值;
(2)由(1)可得m≤3x+9x,令u(x)=3x+9x,由指数函数的单调性判断出函数u(x)在[1,+∞)上单调性,求出u(x)min,由恒成立求出实数m的取值范围.
解答 解:(1)由已知可得,$\left\{\begin{array}{l}{b•a=27}\\{\frac{b}{a}=3}\end{array}\right.$,
解得a=3,b=9…(4分)
(2)由(1)可得m≤3x+9x,x∈[1,+∞),
令u=(x)3x+9x,x∈[1,+∞),只需m≤umin…(6分),
因为函数u(x)=3x+9x在[1,+∞)为单调增函数,…(9分)
所以u(x)min=12,
即实数m的取值范围是:{m|m≤12}.…(12分)
点评 本题考查待定系数法求函数的解析式,指数函数的单调性,以及恒成立问题的转化,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [$\sqrt{2}$,+∞) | B. | (1,$\frac{\sqrt{5}}{2}$] | C. | [$\frac{\sqrt{5}+1}{2}$,+∞) | D. | [$\frac{\sqrt{10}+\sqrt{2}}{4}$,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{5}$ | B. | $\frac{2}{5}$ | C. | $\frac{3}{5}$ | D. | $\frac{4}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | -1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2}$ | B. | $\sqrt{5}$ | C. | $\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com