精英家教网 > 高中数学 > 题目详情
17.已知定义在R上的奇函数f(x)满足f(x+1)=f(1-x),且当x∈[0,1]时,f(x)=log2(x+1),则f(31)=(  )
A.0B.1C.-1D.2

分析 根据函数奇偶性和条件求出函数是周期为4的周期函数,利用函数周期性和奇偶性的关系进行转化即可得到结论.

解答 解:∵奇函数f(x)满足f(x+1)=f(1-x),
∴f(x+1)=f(1-x)=-f(x-1),即f(x+2)=-f(x),
则f(x+4)=-f(x+2)=f(x),
即函数f(x)是周期为4的函数,
∵当x∈[0,1]时,f(x)=log2(x+1),
∴f(31)=f(32-1)=f(-1)=-f(1)=-log22=-1,
故选:C.

点评 本题主要考查函数值的计算,根据条件求出函数的周期性,利用函数的奇偶性和周期性进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知$sinα=\frac{3}{5}$,且α为第二象限角,则$tan({2α+\frac{π}{4}})$=(  )
A.$-\frac{19}{5}$B.$-\frac{5}{19}$C.$-\frac{31}{17}$D.$-\frac{17}{31}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=b•ax(其中a,b为正实数且a≠1)的图象经过点A(1,27),B(-1,3)
(1)试求a、b的值;
(2)若不等式ax+bx≥m在x∈[1,+∞)时恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在梯形ABCD中,已知AD∥BC,AD=1,BD=2$\sqrt{10}$,∠CAD=$\frac{π}{4}$,tan∠ADC=-2,求:
(1)CD的长;
(2)△BCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数f(x)=|x2-a2+$\frac{1}{2}$a|在区间[-$\sqrt{3}$,$\sqrt{3}$]上的最大值M(a)取最小值时a=-$\frac{3}{2}$或2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设$\overrightarrow{a}$=(-1,3,2),$\overrightarrow{b}$=(2,-3,-4),$\overrightarrow{c}$=(-3,12,6),证明三向量$\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$共面,并用$\overrightarrow{a}$和$\overrightarrow{b}$表示$\overrightarrow{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.函数f(x)=$\frac{x}{{x}^{2}+2}$(x∈R),若f(x+$\frac{π}{3}$)=a有实数解,则实数a的取值范围是[-$\frac{\sqrt{2}}{4}$,$\frac{\sqrt{2}}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.若函数f(x)=x+$\frac{1}{x}$+2a-1为奇函数,则a=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.式子$\frac{m(m+1)(m+2)…(m+20)}{20!}$可表示为(  )
A.A${\;}_{m+20}^{20}$B.C${\;}_{m+20}^{20}$C.21C${\;}_{m+20}^{20}$D.21C${\;}_{m+20}^{21}$

查看答案和解析>>

同步练习册答案