精英家教网 > 高中数学 > 题目详情
7.式子$\frac{m(m+1)(m+2)…(m+20)}{20!}$可表示为(  )
A.A${\;}_{m+20}^{20}$B.C${\;}_{m+20}^{20}$C.21C${\;}_{m+20}^{20}$D.21C${\;}_{m+20}^{21}$

分析 根据$\frac{m(m+1)(m+2)…(m+20)}{20!}$=21•$\frac{m(m+1)(m+2)…(m+20)}{21!}$,结合组合数的公式即可得出结论.

解答 解:$\frac{m(m+1)(m+2)…(m+20)}{20!}$中,分式的分母是20!,
分子是21个连续自然数的乘积,且最大的为m+100,最小的为m,
故$\frac{m(m+1)(m+2)…(m+20)}{20!}$=21•$\frac{m(m+1)(m+2)…(m+20)}{21!}$=21•${C}_{m+20}^{21}$.
故选:D.

点评 本题考查了组合数公式的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知定义在R上的奇函数f(x)满足f(x+1)=f(1-x),且当x∈[0,1]时,f(x)=log2(x+1),则f(31)=(  )
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知复数z=$\frac{5{i}^{5}}{2-{i}^{3}}$-3i,则|z|等于(  )
A.2$\sqrt{2}$B.$\sqrt{5}$C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.从双曲线$\frac{{x}^{2}}{a}$-y2=1的一个焦点F到向它的一条渐近线作垂线,垂足为A,O为原点.若△AOF的面积为1,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.$\frac{\sqrt{7}}{2}$D.$\frac{\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设Sn是数列{an}的前n项和,Sn=(-1)n•an-$\frac{1}{{2}^{n-1}}$,n∈N*,则S1+S2+…+S10=-$\frac{511}{768}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若tanα+cotα=4,则sin2α=(  )
A.-$\frac{1}{4}$B.$\frac{1}{4}$C.-$\frac{1}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=cosx(2$\sqrt{3}$sinx-cosx)+asin2x的一个零点是$\frac{π}{12}$.
(1)求函数f(x)的最小正周期;
(2)令x∈[-$\frac{π}{6}$,$\frac{π}{4}$],求此时f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知α是锐角,sin(2α+$\frac{π}{3}$)=$\frac{1}{3}$,则cos($\frac{π}{12}$-α)的值是(  )
A.$\frac{\sqrt{6}}{3}$B.-$\frac{\sqrt{6}}{3}$C.$\frac{\sqrt{3}}{3}$D.-$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{y≥0}\\{2x+y≤2}\end{array}\right.$,目标函数z=ax+by(a>0,b>0)的最大值M,若M的取值范围是[1,2],则点M(a,b)所经过的区域面积=$\frac{3}{2}$.

查看答案和解析>>

同步练习册答案