设
分别为椭圆
的左、右焦点,斜率为
的直线
经过右焦点
,且与椭圆W相交于
两点.
(1)求
的周长;
(2)如果
为直角三角形,求直线
的斜率
.
(1)
的周长为
;(2)直线
的斜率
,或
时,
为直角三角形.
解析试题分析:(1)求
的周长,这是焦点三角问题,解这一类问题,往往与定义有关,本题可由椭圆定义得
,
,两式相加即得
的周长;(2)如果
为直角三角形,求直线
的斜率
,由于没教得那一个角为直角,故三种情况,
,或
,或
,当
时,此时直线
的存在,设出直线方程,代入椭圆方程,设
,
,由根与系数关系,得到关系式,再由
,即可求出斜率
的值,当
(与
相同)时,则点A在以线段
为直径的圆
上,也在椭圆W上,求出点
的坐标,从而可得直线
的斜率
.
(1)椭圆
的长半轴长
,左焦点
,右焦点
, 2分
由椭圆的定义,得
,
,
所以
的周长为
. 5分
(2)因为
为直角三角形,
所以
,或
,或
,再由当
时,
设直线
的方程为
,
,
, 6分
由
得
, 7分
所以
,
. 8分
由
,得
, 9分
因为
,
,
所以
![]()
![]()
, 10分
解得
.
科目:高中数学 来源: 题型:解答题
已知三条直线l1:2x-y+a =" 0" (a>0),直线l2:-4x+2y+1 = 0和直线l3:x+y-1= 0,且l1与l2的距离是
.
(1)求a的值;
(2)能否找到一点P,使得P点同时满足下列三个条 件:
①P是第一象限的点;
②P 点到l1的距离是P点到l2的距离的
;
③P点到l1的距离与P点到l3的距离之比是
∶
.若能,求P点坐标;若不能,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知定点
、
,动点
,且满足
、
、![]()
成等差数列.
(1)求点
的轨迹
的方程;
(2)若曲线
的方程为
,过点
的直线
与曲线
相切,
求直线
被曲线
截得的线段长的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知平行四边形ABCD的两条邻边AB、AD所在的直线方程为
;
,它的中心为M
,求平行四边形另外两条边CB、CD所在的直线方程及平行四边形的面积.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知△ABC的顶点为A(3,-1),AB边上的中线所在的直线方程为6x+10y-59=0,∠B的平分线所在的直线方程为x-4y+10=0,求BC边所在的直线方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com