分析 根据不等式x2+ax+9≥0在x≥1时恒成立,得出a≥-(x+$\frac{9}{x}$)在x≥1时恒成立;构造函数f(x)=-(x+$\frac{9}{x}$),x≥1,求f(x)max即可得出结论.
解答 解:关于x的不等式x2+ax+9≥0在x≥1时恒成立,
∴a≥-(x+$\frac{9}{x}$)在x≥1时恒成立;
构造函数f(x)=-(x+$\frac{9}{x}$),其中x≥1,
∴a≥f(x)max;
∵x+$\frac{9}{x}$≥2$\sqrt{x•\frac{9}{x}}$=6,当且仅当x=$\frac{9}{x}$,即x=3时取“=”;
∴函数f(x)=-(x+$\frac{9}{x}$)在x≥1时有最大值为f(3)=-6,
∴a的取值范围是a≥-6.
故答案为:a≥-6.
点评 本题考查了不等式恒成立问题,此类问题常构造函数,转化为求解函数的最值问题:a>f(x)(或a<f(x))恒成立?a>f(x)max(或a<f(x)min),体现了转化思想在解题中的应用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2或$\frac{2}{55}$ | B. | -2 | C. | 2 | D. | 2或$-\frac{2}{55}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {0,1,2} | B. | {0,1,2,3} | C. | {1,2} | D. | {0,2} |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充分必要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com