精英家教网 > 高中数学 > 题目详情
9.一个袋中装有黑球、白球和红球共n(n∈N*)个,这些球除颜色外完全相同.已知从袋中任意摸出1个球,得到黑球的概率是$\frac{2}{5}$,现从袋中任意摸出2个球.若n=15,且摸出的2个球都是白球的概率是$\frac{2}{21}$,设ξ表示摸出的2个球中红球的个数,则随机变量ξ的数学期望Eξ=$\frac{8}{15}$.

分析 根据古典概型的概率公式求出三种球的个数,再计算ξ=0,1,2时的概率,得出数学期望.

解答 解:设黑球,白球,红球个数分别是x,y,z,则
$\left\{\begin{array}{l}{x+y+z=15}\\{\frac{x}{15}=\frac{2}{5}}\\{\frac{{C}_{y}^{2}}{{C}_{15}^{2}}=\frac{2}{21}}\end{array}\right.$,解的x=6,y=5,z=4.
ξ的可能取值为0,1,2,
∴P(ξ=0)=$\frac{{C}_{11}^{2}}{{C}_{15}^{2}}$=$\frac{11}{21}$,P(ξ=1)=$\frac{{{C}_{4}^{1}C}_{11}^{1}}{{C}_{15}^{2}}$=$\frac{44}{105}$,P(ξ=2)=$\frac{{C}_{4}^{2}}{{C}_{15}^{2}}$=$\frac{2}{35}$,
∴Eξ=0×$\frac{11}{21}$+1×$\frac{44}{105}$+2×$\frac{2}{35}$=$\frac{8}{15}$.
故答案为:$\frac{8}{15}$.

点评 本题考查了古典概型的概率计算,组合数公式的应用,离散型随机变量的数学期望,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.如图是一个空间几何体的三视图,则该几何体的表面积是(  )
A.1+$\sqrt{2}$+$\sqrt{3}$B.2+$\sqrt{2}$+$\sqrt{3}$C.3+$\sqrt{2}$+$\sqrt{3}$D.4+$\sqrt{2}$+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.直线x+2y+3=0将圆(x-a)2+(y+5)2=3平分,则a=(  )
A.13B.7C.-13D.-7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.周立波是海派清口创始人和《壹周•立波秀》节目的主持人,他的点评视角独特,语言幽默犀利,给观众留下了深刻的印象.某机构为了了解观众对《壹周•立波秀》节目的喜爱程度,随机调查了观看了该节目的140名观众,得到如下的列联表:(单位:名)
总计
喜爱4060100
不喜爱202040
总计6080140
(Ⅰ)从这60名男观众中按对《壹周•立波秀》节目是否喜爱采取分层抽样,抽取一个容量为6的样本,问样本中喜爱与不喜爱的观众各有多少名?
(Ⅱ)根据以上列联表,问能否在犯错误的概率不超过0.025的前提下认为观众性别与喜爱《壹周•立波秀》节目有关.(精确到0.001)
(Ⅲ)从(Ⅰ)中的6名男性观众中随机选取两名作跟踪调查,求选到的两名观众都喜爱《壹周•立波秀》节目的概率.
p(k2≥k00.100.050.0250.0100.005
k02.7053.8415.0246.6357.879
附:临界值表参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.如图是一个算法流程图,则输出的x的值是(  )
A.59B.33C.13D.151

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.函数y=loga(x+3)-1(a>0,a≠1)的图象恒过定点A,若点A在直线mx+ny+1=0上,其中mn>0,求$\frac{1}{m}$+$\frac{2}{n}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知f(x)=2x+1,x∈R且f(x)可表示为一个偶函数g(x)与一个奇函数h(x)的和,设h(x)=t,p(t)=g(2x)+2mh(x)+m2-m+1,m∈R.
(1)求P(t)的解析式;
(2)若p(t)≥m2-m+1对于x∈[1,2]恒成立,求m的取值范围;
(3)当P(P(t))=0无实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)的图象经过点(1,λ),且对任意x∈R,都有f(x+1)=f(x)+2.数列{an}满足a1=λ-2,an+1=$\left\{\begin{array}{l}{2^n},n为奇数\\ f({a_n}),n为偶数\end{array}$.
(Ⅰ)当x为正整数时,求f(n)的表达式;
(Ⅱ)设λ=3,求an
(Ⅲ)若对任意n∈N*,总有anan+1<an+1an+2,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设等比数列{an}的前n项和为Sn,则下列不等式中一定成立的是(  )
A.a1+a3>0B.a1a3>0C.S1+S3<0D.S1S3<0

查看答案和解析>>

同步练习册答案