精英家教网 > 高中数学 > 题目详情
15.某商场经过市场调查分析后得知:预计从2013年开始的前n个月内对某种商品需求的累计数f(n)=$\frac{1}{90}$n(n+2)(18-n),n=1,2,3…,12(单位:万件).问在这一年内,哪几个月需求量将超过1.3万件.

分析 首先求出第n个月的月需求量,根据需求量超过1.3万件建立不等式关系,可求出所求.

解答 解:第n个月的月需求量=$\left\{\begin{array}{l}{f(1),n=1}\\{f(n)-f(n-1),2≤n≤12}\end{array}\right.$,
∵f(n)=$\frac{1}{90}$n(n+2)(18-n),
∴f(1)=$\frac{17}{30}$.
当n≥2时,f(n-1)=$\frac{1}{90}$(n-1)(n+1)(19-n),
∴f(n)-f(n-1)=$\frac{1}{90}$(-3n2+35n+19),
令f(n)-f(n-1)>1.3,
即-3n2+35n+19>117,
解得:$\frac{14}{3}$<n<7,
∵n∈N,∴n=5,6.
即这一年的5、6两个月的需求量超过1.3万件.

点评 本题主要考查了函数模型的选择与应用,考查数列的通项和前n项和的关系,同时考查了计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.设数列{an}的前n项和为Sn,已知a1≠0,且a1Sn=2an-a1,n∈N*,
(1)求a1,a2,并求{an}的通项公式;
(2)求数列{nan}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.若复数$z=\frac{{1-\sqrt{3}i}}{{\sqrt{3}+i}}$,则$|{\overline z}|$=(  )
A.1B.2C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.方程$\frac{x^2}{4+m}+\frac{y^2}{2-m}=1$表示椭圆的必要不充分条件是(  )
A.m∈(-1,2)B.m∈(-4,2)C.m∈(-4,-1)∪(-1,2)D.m∈(-1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列给出的命题正确的是(  )
A.零向量是唯一没有方向的向量
B.平面内的单位向量有且仅有一个
C.$\overrightarrow{a}$与$\overrightarrow{b}$是共线向量,$\overrightarrow{b}$与$\overrightarrow{c}$是平行向量,则$\overrightarrow{a}$与$\overrightarrow{c}$是方向相同的向量
D.相等的向量必是共线向量

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某理科考生参加自主招生面试,从7道题中(4道理科题3道文科题)不放回地依次任取3道作答.
(1)求该考生在第一次抽到理科题的条件下,第二次和第三次均抽到文科题的概率;
(2)规定理科考生需作答两道理科题和一道文科题,该考生答对理科题的概率均为$\frac{2}{3}$,答对文科题的概率均为$\frac{1}{4}$,若每题答对得10分,否则得零分.现该生已抽到三道题(两理一文),求其所得总分X的分布列与数学期望E(X).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.平面上有k个圆,每两个圆都交于两点,且无三个圆交于一点,设k个圆把平面分成f(k)个区域,那么k+1个圆把平面分成f(k)+2k个区域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.如图所示,在平面四边形ABCD中,$\overrightarrow{DA}•\overrightarrow{AB}=0,|{\overrightarrow{EC}}|=\sqrt{7},|{\overrightarrow{AD}}|=3,\overrightarrow{AE}=2\overrightarrow{ED}$,$\overrightarrow{DA}$与$\overrightarrow{DC}$的夹角为$\frac{2}{3}π$,$\overrightarrow{EC}$与$\overrightarrow{EB}$的夹角为$\frac{π}{3}$.
(1)求△CDE的面积S;
(2)求$|{\overrightarrow{BE}}|$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=$\frac{1}{3}$x3-$\frac{a}{2}$x2+bx+c,曲线y=f(x)在点(0,f(0))处的切线方程为y=1.
①求b,c的值;
②已知a∈R,求函数f(x)的单调区间.

查看答案和解析>>

同步练习册答案