精英家教网 > 高中数学 > 题目详情
6.函数f(x)=-$\frac{A}{ω}$cos(ωx+φ)(A>0,ω>0)的导函数的图象如图所示,则f(1)+f(2)+f(3)+…+f(2015)的值等于$\frac{8}{π}$.

分析 根据f′(x)=Asin(ωx+φ)的图象,由由函数的图象的顶点坐标求出A,由周期求出ω,有特殊点的坐标求出φ的值,可得f(x)的解析式,再利用余弦函数的周期性,求得要求式子的值.

解答 解:函数f(x)=-$\frac{A}{ω}$cos(ωx+φ)(A>0,ω>0)的导函数f′(x)=Asin(ωx+φ)的图象,
可得A=2,把原点(0,0)代入,可得sinφ=0,故可取φ=0.
再根据$\frac{T}{4}$=$\frac{1}{4}$•$\frac{2π}{ω}$=2,求得ω=$\frac{π}{4}$,∴f(x)=-$\frac{8}{π}$cos($\frac{π}{4}$x).
再根据函数的周期 T=8,又f(1)+f(2)+f(3)+…+f(8)=0,
∴f(1)+f(2)+f(3)+…+f(2015)=[f(1)+f(2)+f(3)+…+f(2016)]-f(2016)
=252×0-f(2016)=0-f(8)=$\frac{8}{π}$,
故答案为:$\frac{8}{π}$.

点评 本题主要考查余弦函数的图象特征,由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,有特殊点的坐标求出φ的值,余弦函数的周期性的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.已知$\overrightarrow{OA}$=(1,3),$\overrightarrow{OB}$=(6,m),且$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,则|$\overrightarrow{OB}$|=2$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设双曲线x2-y2=1的两渐近线与直线x=$\frac{\sqrt{2}}{2}$围成的三角形区域(包含边界)为D,P(x,y)为区域D内的动点,则目标函数z=2x-y的最大值为(  )
A.-2B.-$\frac{\sqrt{2}}{2}$C.0D.$\frac{3\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.在△ABC中,AD为BC边上的高,且AD=BC,b,c分别表示角B,C所对的边长,则$\frac{b}{c}$的最大值是(  )
A.2B.$\frac{\sqrt{5}+1}{2}$C.$\sqrt{5}$D.$\frac{\sqrt{5}+3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数y=f(x)的图象与y=2x的图象关于直线y=x对称,则f(2)+f(4)=(  )
A.6B.3C.17D.20

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.设函数f(x)=xlnx
(1)求函数f(x)的最小值;
(2)设F(x)=x2-a[x+f′(x)]+2x,讨论函数F(x)的单调性;
(3)在第二问的基础上,若方程F(x)=m,(m∈R)有两个不相等的实数根x1,x2,求证:x1+x2>a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=(x-a)ex(x∈R),函数g(x)=bx-lnx,其中a∈R,b<0.
(1)若函数g(x)在点(1,g(l))处的切线与直线x+2y-3=0垂直,求b的值;
(2)求函数f(x)在区间[0,1]上的最小值;
(3)若存在区间M,使得函数f(x)和g(x)在区间M上具有相同的单调性,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=(a+1)lnx+ax2+1.
(Ⅰ)若函数f(x)在x=1处切线的斜率k=-$\frac{1}{2}$,求实数a的值;
(Ⅱ)讨论函数f(x)的单调性;
(Ⅲ)若xf′(x)≥x2+x+1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知f′(x)是函数f(x)的导函数,f(x)的图象如图所示,则不等式f(x)•f′(x)>0的解集为(  )
A.(0,2)B.(-∞,0)∪(2,3)C.(-∞,0)∪(3,+∞)D.(0,2)∪(3,+∞)

查看答案和解析>>

同步练习册答案