| A. | -2 | B. | -$\frac{\sqrt{2}}{2}$ | C. | 0 | D. | $\frac{3\sqrt{2}}{2}$ |
分析 由双曲线的方程求出渐近线方程,作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案.
解答
解:由x2-y2=1,得其两条渐近线方程为y=±x,
与直线x=$\frac{\sqrt{2}}{2}$围成的三角形区域如图,
化目标函数z=2x-y为y=2x-z,
由图可知,当直线y=2x-z过点A($\frac{\sqrt{2}}{2},-\frac{\sqrt{2}}{2}$)时,直线在y轴上的截距最小,z有最大值为$2×\frac{\sqrt{2}}{2}-(-\frac{\sqrt{2}}{2})=\frac{3\sqrt{2}}{2}$.
故选:D.
点评 本题考查双曲线的简单性质,考查了简单的线性规划,考查数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | $\frac{π}{2}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{5}{3}$ | B. | $\frac{15}{7}$ | C. | $\frac{5}{6}$ | D. | $\frac{15}{14}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | -1 | 0 | 4 | 5 |
| f(x) | 1 | 2 | 2 | 1 |
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com