精英家教网 > 高中数学 > 题目详情
17.在△ABC中,已知sin2A+sin2B=sin2C,求证△ABC是直角三角形.

分析 直接利用正弦定理以及勾股定理判断即可.

解答 证明:在△ABC中,已知sin2A+sin2B=sin2C,
由正弦定理可得:a2+b2=c2
三角形是直角三角形.

点评 本题考查正弦定理的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.函数y=sin($\frac{π}{2}$x+$\frac{5π}{6}$)的最小正周期为(  )
A.$\frac{π}{3}$B.$\frac{π}{2}$C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.函数f(x)为定义在R上周期为2的奇函数,且x∈(-1,1)时,f(x)=$\frac{{3}^{x}-a}{{3}^{x}+1}$(a∈R).
(1)求a的值;
(2)求f(log${\;}_{\frac{1}{3}}$6)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设等差数列{an}的前n项和为Sn,且a3=5,S7=49;数列{bn}的前n项和为Tn,且2bn-Tn=2.
(1)求数列{an},{bn}的通项公式;
(2)若cn=an•bn(n∈N+),求数列{cn}的前n项和Pn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}满足a${\;}_{n+1}^{2}$=anan+2,且a1=$\frac{1}{3}$,a4=$\frac{1}{81}$.
(1)求数列{an}的通项公式;
(2)设f(x)=log3x,bn=f(a1)+f(a2)+…+f(an),Tn=$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+…+$\frac{1}{{b}_{n}}$,求T2017

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=2cos2x+sin2x的递增区间是[kπ-$\frac{3π}{8}$,kπ+$\frac{π}{8}$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.等比数列{an}满足an=$\left\{\begin{array}{l}{{n}^{2},{a}_{n-1}<{n}^{2}}&{\;}\\{2{a}_{n-1},{a}_{n-1}≥{n}^{2}}&{\;}\end{array}\right.$(n≥2),则a1的取值范围是{a1|a1≥$\frac{9}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知$\overrightarrow{OA}$=(1,3),$\overrightarrow{OB}$=(6,m),且$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,则|$\overrightarrow{OB}$|=2$\sqrt{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设双曲线x2-y2=1的两渐近线与直线x=$\frac{\sqrt{2}}{2}$围成的三角形区域(包含边界)为D,P(x,y)为区域D内的动点,则目标函数z=2x-y的最大值为(  )
A.-2B.-$\frac{\sqrt{2}}{2}$C.0D.$\frac{3\sqrt{2}}{2}$

查看答案和解析>>

同步练习册答案