精英家教网 > 高中数学 > 题目详情
8.函数f(x)为定义在R上周期为2的奇函数,且x∈(-1,1)时,f(x)=$\frac{{3}^{x}-a}{{3}^{x}+1}$(a∈R).
(1)求a的值;
(2)求f(log${\;}_{\frac{1}{3}}$6)的值.

分析 (1)利用函数的奇偶性的性质可得f(0)=0,由此求得a的值.
(2)利用奇函数的性质、对数的运算性质,化简所给的式子,可得结果.

解答 解:(1)∵函数f(x)为定义在R上周期为2的奇函数,且x∈(-1,1)时,f(x)=$\frac{{3}^{x}-a}{{3}^{x}+1}$(a∈R),
∴f(0)=$\frac{1-a}{2}$=0,求得a=1,∴f(x)=$\frac{{3}^{x}-a}{{3}^{x}+1}$=$\frac{{3}^{x}-1}{{3}^{x}+1}$.
(2)f(log${\;}_{\frac{1}{3}}$6)=f(2+log${\;}_{\frac{1}{3}}$6)=f(log${\;}_{\frac{1}{3}}$$\frac{2}{3}$)=f(${log}_{3}\frac{3}{2}$)=$\frac{{3}^{{log}_{3}\frac{3}{2}}-1}{{3}^{{log}_{3}\frac{3}{2}}+1}$=$\frac{\frac{3}{2}-1}{\frac{3}{2}+1}$=$\frac{1}{5}$.

点评 本题主要考查函数的周期性和奇偶性的应用,对数的运算性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.若α∈($\frac{3}{2}$π,2π)sin($\frac{π}{2}$-β)•cos(α+β)-sin(π+β)•sin(α+β)=$\frac{3}{5}$,求tan($\frac{π}{4}$-$\frac{α}{2}$),tan2α.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,已知sinB=$\frac{4}{5}$,cosA=$\frac{12}{13}$,则cosC=-$\frac{16}{65}$或$\frac{56}{65}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.求过两条直线y=2x+3与3x-y+2=0的交点,且分别满足下列条件的直线方程:
(1)斜率为-$\frac{1}{2}$;(2)过点P(2,3);
(3)垂直于直线3x-2y+4=0;(4)平行于直线3x+y=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在△ABC中,若a=1,c=2,A=30°,则△ABC的面积为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{3}}{2}$C.1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{x}{lnx}$-ax,a>0.
(1)若函数y=f(x)在(1,+∞)上是减函数,求实数a的最小值
(2)若存在x1∈[e,e2],使f(x1)≤$\frac{1}{4}$成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.证明圆心为坐标原点,半径为5的圆的方程是x2+y2=25,并判断点M(3,-4),N(-2$\sqrt{5}$,2)是否在这个圆上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在△ABC中,已知sin2A+sin2B=sin2C,求证△ABC是直角三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知k∈R,z是非零复数,满足Rez+Imz=0,(1+$\overline{z}$)2-kz=1-(1+i)2
(1)求z的值;
(2)设m∈[log2k,k],求|k+m•z|的取值范围.

查看答案和解析>>

同步练习册答案