分析 对a1分类讨论,利用已知及其等比数列的通项公式即可得出a1的取值范围.
解答 解:①当${a}_{1}≤{2}^{2}=4$时,a2=4.由于${a}_{2}<{3}^{2}$,因此a3=32=9.
∵{an}为等比数列,∴${{a}_{2}}^{2}={a}_{1}{a}_{3}$,则42=9a1,解得a1=$\frac{16}{9}$.
而a4=42=16,不满足{an}为等比数列,舍去.
②当a1≥22时,a2=2a1,∴a2≥8.
当8≤a2<9时,a3=32=9.
∵{an}为等比数列,∴${{a}_{2}}^{2}$=a1a3,则4${{a}_{1}}^{2}$=9a1,解得a1=$\frac{9}{4}$,舍去.
当a2≥9时,a3=2a2.可得{an}为等比数列,公比为2.此时a1≥$\frac{9}{2}$.
综上可得:a1的取值范围是{a1|a1≥$\frac{9}{2}$}.
故答案为:{a1|a1≥$\frac{9}{2}$}.
点评 本题考查了递推关系、等比数列的通项公式及其性质,考查了分类讨论方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2+$\sqrt{2}$,2-$\sqrt{2}$ | B. | $\sqrt{2}$,-$\sqrt{2}$ | C. | -$\sqrt{2}$,$\sqrt{2}$ | D. | 2,-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com