精英家教网 > 高中数学 > 题目详情
9.设数列{an}的各项均为正数,其前n项和Sn满足Sn=$\frac{1}{6}$(${a_n}^2$+3an-4),则Sn=$\frac{3}{2}$n2+$\frac{5}{2}n$.

分析 先跟怒递推公式求出a1,再利用相减法求出{an}是以4为首项,3为公差的等差数列,再根据等差数列的前n项和公式即可求出.

解答 解:当n=1时,$6{S_1}={a_1}^2+3{a_1}-4$,
即${a_1}^2-3{a_1}-4=0$,得a1=4或a1=-1(舍).
由题意得:$6{S_{n+1}}={a_{n+1}}^2+3{a_{n+1}}-4$…①$6{S_n}={a_n}^2+3{a_n}-4$…②
①-②得:$6{a_{n+1}}=a_{n+1}^2-a_n^2+3{a_{n+1}}-3{a_n}$,即(an+1+an)(an+1-an-3)=0,
∵an>0,∴an+1-an=3,
∴{an}是以4为首项,3为公差的等差数列,
∴an=4+3(n-1)=3n+1.
∴${S_n}=\frac{n(4+3n+1)}{2}=\frac{3}{2}{n^2}+\frac{5}{2}n$,
故答案为:$\frac{3}{2}$n2+$\frac{5}{2}n$.

点评 本题考查了等差数列的通项公式及其前n项和公式、递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.执行如图所示的程序框图,输出的结果为98,则判断框内可填入的条件为(  )
A.n>4?B.n>5?C.n>6?D.n>7?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.圆心与抛物线y2=4x的焦点重合,且被抛物线准线截得的弦长为4的圆的标准方程为(  )
A.(x-1)2+y2=4B.(x-2)2+y2=4C.(x-1)2+y2=8D.(x-2)2+y2=8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如图是一个算法流程图,则输出的T的值为14.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.经过抛物线y2=2px(p>0)外一点A(-2,-4)的直线l:$\left\{\begin{array}{l}{x=-2+\frac{\sqrt{2}}{2}t}\\{y=-4+\frac{\sqrt{2}}{2}t}\\{\;}\end{array}\right.$(t为参数,t∈R)与抛物线分别交于M1,M2两点,且|AM1|、|M1M2|,|AM2|成等比数列.
(1)把直线l的参数方程化为普通方程;
(2)求p的值及线段M1M2的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知角α的顶点在原点,始边与x轴的正半轴重合,终边经过点P(-$\frac{{\sqrt{6}}}{3}$,$\frac{{\sqrt{3}}}{3}$),则tan2α的值为$-2\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.${log_{\sqrt{2}}}$2$\sqrt{2}$+log23•log3$\frac{1}{4}$=1;若2a=5b=10,则$\frac{1}{a}$+$\frac{1}{b}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知不等式组$\left\{\begin{array}{l}{x>0}\\{y≤1}\\{2x-2y+1≤0}\end{array}\right.$表示的平面区域为D,若直线y=-2x+a与区域D有公共点,则a的取值情况是(  )
A.有最大值2,无最小值B.有最小值2,无最大值
C.有最小值$\frac{1}{2}$,最大值2D.既无最小值,也无最大值

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知射击一次甲命中目标的概率是$\frac{3}{4}$,乙命中目标的概率是$\frac{4}{5}$,现甲、乙朝目标各射击一次,目标被击中的概率是(  )
A.$\frac{1}{2}$B.$\frac{3}{5}$C.$\frac{9}{20}$D.$\frac{19}{20}$

查看答案和解析>>

同步练习册答案