精英家教网 > 高中数学 > 题目详情
20.圆心与抛物线y2=4x的焦点重合,且被抛物线准线截得的弦长为4的圆的标准方程为(  )
A.(x-1)2+y2=4B.(x-2)2+y2=4C.(x-1)2+y2=8D.(x-2)2+y2=8

分析 由抛物线方程求出焦点坐标,即要求圆的圆心坐标,再由垂径定理求得半径,则圆的方程可求.

解答 解:由y2=4x,得2p=4,p=2,
∴抛物线y2=4x的焦点坐标为F(1,0),
如图,设抛物线的准线交x轴于D,
由题意可知,DB=2,又DF=2,
∴r2=BF2=22+22=8.
则所求圆的标准方程为(x-1)2+y2=8.
故选:C.

点评 本题考查圆的标准方程,考查了抛物线的简单性质,考查数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.设函数f(x)=exsinx,x∈[0,π],则(  )
A.x=$\frac{π}{2}$为f(x)的极小值点B.x=$\frac{π}{2}$为f(x)的极大值点
C.x=$\frac{3π}{4}$为f(x)的极小值点D.x=$\frac{3π}{4}$为f(x)的极大值点

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.等差数列{an}中的a3,a2015是函数f(x)=x3-9x2+8x-1的极值点,则log${\;}_{\frac{1}{3}}$a1009=(  )
A.-1B.1C.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知动点M到点(8,0)的距离是M到点(2,0)的距离的两倍,其轨迹与圆x2+y2-8x-8y+16=0相交于A,B两点,则线段AB的长度是(  )
A.4$\sqrt{2}$B.2$\sqrt{2}$C.$\sqrt{14}$D.2$\sqrt{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知不等式(ax+3)(x2-b)≤0对任意x∈(0,+∞)恒成立,其中a,b是整数,则a+b的取值的集合为{-2,8}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知两个单位向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为30°,$\overrightarrow{c}$=$\sqrt{3}$t$\overrightarrow{a}$+(1-t)$\overrightarrow{b}$,若$\overrightarrow{b}$•$\overrightarrow{c}$=0,则t=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.有一个长为10米的木棒斜插在地面上,点P是地面内的一个动点,若点P与木棒的两个端点构成的三角形面积为定值,则点P的轨迹为(  )
A.椭圆B.C.两条平等直线D.双曲线

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设数列{an}的各项均为正数,其前n项和Sn满足Sn=$\frac{1}{6}$(${a_n}^2$+3an-4),则Sn=$\frac{3}{2}$n2+$\frac{5}{2}n$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在平面直角坐标系xOy中,已知圆C:(x-4)2+(y-3)2=4,点A、B在圆C上,且|AB|=2$\sqrt{3}$,则|$\overrightarrow{OA}$+$\overrightarrow{OB}$|的最小值是8.

查看答案和解析>>

同步练习册答案