精英家教网 > 高中数学 > 题目详情
4.从4台甲型和5台乙型电视机中任意取出2台,其中甲型与乙型电视机各1台,则不同的取法种数为20.

分析 根据题意,分2步进行分析:①、先在4台甲型电视机取出1台,②、再在5台乙型电视机中取出1台,分别求出每一步的情况数目,由分步计数原理计算可得答案.

解答 解:根据题意,分2步进行分析:
①、先在4台甲型电视机取出1台,有4种取法;
②、再在5台乙型电视机中取出1台,有5种取法;
则有4×5=20种不同的取法;
故答案为:20.

点评 本题考查分步计数原理的应用,涉及组合数公式,注意分步分析满足题意的要求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.$tan(-\frac{π}{4})$=(  )
A.1B.-1C.$\frac{{\sqrt{2}}}{2}$D.$-\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=x2+mx+$\frac{mx+1}{{x}^{2}}$+n(m,n∈R)有零点,则m2+n2的取值范围是[$\frac{4}{5}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.实数m分别取什么数值时,复数z=(m2+5m+6)+(m2-2m-15)i
(1)对应的点在x轴的上方;
(2)$\frac{z}{1+i}$为纯虚数.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.不等式x2+3x-4<0的解集是(-4,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.△ABC的内角A,B,C的对边分别为,且2acosC=2b-c.
(1)求A的大小;
(2)若△ABC为锐角三角形,求sinB+sinC的取值范围;
(3)若$a=2\sqrt{3}$,且△ABC的面积为$2\sqrt{3}$,求cos2B+cos2C的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.在区间[-1,1]上任取两数a、b,则关于x的二次方程x2+2ax+b=0有两个实数根的概率为(  )
A.$\frac{π-2}{2}$B.$\frac{4-π}{4}$C.$\frac{π}{4}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(Ⅰ)证明:PA⊥BD;
(II)若PD=AD,求AD与平面PAB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在平面直角坐标系xOy中,以原点O为极点,x轴的非负半轴为极轴,建立极坐标系,若直线l的参数方程为$\left\{\begin{array}{l}{x=cosα}\\{y={y}_{0}+tsinα}\end{array}\right.$(t为参数,α为l的倾斜角),曲线E的极坐标方程为ρ=4sinθ.射线θ=β,θ=β+$\frac{π}{4}$,θ=β-$\frac{π}{4}$与曲线E分别交于不同于极点的三点A、B、C.
(1)求证:|OB|+|OC|=$\sqrt{2}$|OA|;
(2)当β=$\frac{7π}{12}$时,直线l过B、C两点,求y0与α的值.

查看答案和解析>>

同步练习册答案