精英家教网 > 高中数学 > 题目详情
12.实数m分别取什么数值时,复数z=(m2+5m+6)+(m2-2m-15)i
(1)对应的点在x轴的上方;
(2)$\frac{z}{1+i}$为纯虚数.

分析 (1)解不等式求出m的范围即可;(2)根据纯虚数的定义得到关于m的不等式组,解出即可.

解答 解:(1)由z的对应点在x轴上方,
得m2-2m-15>0,解得m<-3或m>5.
(2)因为$\frac{z}{1+i}=\frac{{z({1-i})}}{2}=\frac{{2{m^2}+3m-9}}{2}-\frac{7m+21}{2}i$,
由$\frac{z}{1+i}$为纯虚数,得$\left\{\begin{array}{l}\frac{{2{m^2}+3m-9}}{2}=0\\ \frac{7m+21}{2}≠0\end{array}\right.$,
解得$m=\frac{3}{2}$.

点评 本题考查了复数的定义,考查纯虚数问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=4Sn-1.
(1)求{an}的通项公式;
(2)若数列{bn}满足$\frac{{a}_{n}}{{b}_{n}}$=2n-1(n∈N*),设Tn是数列{bn}的前n项和,证明Tn<6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,-4),|$\overrightarrow{c}$|=$\sqrt{5}$,若($\overrightarrow{c}$-$\overrightarrow{b}$)•$\overrightarrow{a}$=$\frac{15}{2}$,则$\overrightarrow{a}$与$\overrightarrow{c}$的夹角为(  )
A.30°B.60°C.150°D.120°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知一三棱柱ABC-A1B1C1各棱长相等,B1在底面ABC上的射影是AC的中点,则异面直线AA1与BC所成角的余弦值为(  )
A.$\frac{\sqrt{7}}{4}$B.$\frac{3}{4}$C.$\frac{1}{3}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.中国古代算书《孙子算经》中有一著名的问题:今有物,不知其数.三三数之剩二;五五数之剩三;七七数之剩二.问物几何?后来,南宋数学家秦九昭在其《数书九章》中对此问题的解法做了系统的论述,并称之为“大衍求一术”.如图程序框图的算法思路源于“大衍求一术”,执行该程序框图,若输入的a,b的值分别为40,34,则输出的c的值为(  )
A.7B.9C.20D.22

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.在△ABC中,若sinA:sinB:sinC=3:5:7,则cosC=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.从4台甲型和5台乙型电视机中任意取出2台,其中甲型与乙型电视机各1台,则不同的取法种数为20.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在锐角△ABC中,若sinA=3sinBsinC,则tanAtanBtanC的最小值是12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.设函数f(x)在x0处可导,则$\underset{lim}{△x→0}$$\frac{f({x}_{0}-△x)-f({x}_{0})}{△x}$等于-f′(x0).

查看答案和解析>>

同步练习册答案