分析 (1)由anan+1=4Sn-1.an+1an+2=4Sn+1-1.得an+1(an+2-an)=4an+1,即an+2-an=4可得数列{a2n-1}是首项为1,公差为4的等差数列,a2n-1=4n-3=2(2n-1)-1可得数列{a2n}是首项为1,公差为4的等差数列.a2n=4n-1=2•2n-1可得数列{an}的通项公式为an=2n-1由得$\frac{{a}_{n}}{{b}_{n}}$=2n-1(n∈N*),${b}_{n}=\frac{2n-1}{{2}^{n-1}}=(2n-1)(\frac{1}{2})^{n-1}$,利用错位相减法求和即可.
解答 解:(1)由anan+1=4Sn-1.an+1an+2=4Sn+1-1.得an+1(an+2-an)=4an+1
∵an+1≠0,∴an+2-an=4
a1=1,a1a2=4s1-1,可得a2=3.
可得数列{a2n-1}是首项为1,公差为4的等差数列,∴a2n-1=4n-3=2(2n-1)-1.
可得数列{a2n}是首项为1,公差为4的等差数列.∴a2n=4n-1=2•2n-1
综上数列{an}的通项公式为an=2n-1
(2)由得$\frac{{a}_{n}}{{b}_{n}}$=2n-1(n∈N*),${b}_{n}=\frac{2n-1}{{2}^{n-1}}=(2n-1)(\frac{1}{2})^{n-1}$,
${T}_{n}=1•(\frac{1}{2})^{0}+3•(\frac{1}{2})^{1}+5•(\frac{1}{2})^{2}+…+$(2n-3)$(\frac{1}{2})^{n-2}$+(2n-1)$(\frac{1}{2})^{n-1}$;
$\frac{1}{2}{T}_{n}$=1$•(\frac{1}{2})^{1}$+3$•(\frac{1}{2})^{2}$+…+(2n-5)$(\frac{1}{2})^{n-2}$+(2n-3)($\frac{1}{2})^{n-1}$n-1+(2n-1)$(\frac{1}{2})^{n}$
∴$\frac{1}{2}{T}_{n}$=1+2[$(\frac{1}{2})^{1}+(\frac{1}{2})^{2}+…+(\frac{1}{2})^{n-1}]-(2n-1)(\frac{1}{2})^{n}$-(2n-1)$(\frac{1}{2})^{n}$
=1+$\frac{1-(\frac{1}{2})^{n-1}}{1-\frac{1}{2}}-\frac{2n-1}{{2}^{n}}$=3-$\frac{2n+3}{{2}^{n}}$
∴${T}_{n}=6-\frac{2n+3}{{2}^{n-1}}$
∵n∈N+,∴${T}_{n}=6-\frac{2n+3}{{2}^{n-1}}<6$
点评 本题考查了利用数列的递推式求通项,错位相减法求和,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 7 | B. | 8 | C. | 9 | D. | 不存在 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -1 | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $-\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com