精英家教网 > 高中数学 > 题目详情
14.已知$sin(x+\frac{π}{3})=\frac{{\sqrt{3}}}{3}$则$sin(\frac{2π}{3}-x)$的值为$\frac{{\sqrt{3}}}{3}$.

分析 由条件利用诱导公式进行化简所给的式子求的结果.

解答 解:已知$sin(x+\frac{π}{3})=\frac{{\sqrt{3}}}{3}$,则$sin(\frac{2π}{3}-x)$=sin[π-($\frac{2π}{3}$-x)]=sin(x+$\frac{π}{3}$)=$\frac{\sqrt{3}}{3}$,
故答案为:$\frac{\sqrt{3}}{3}$.

点评 本题主要考查利用诱导公式进行化简求值,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

4.已知三点A( 1,1 ),B( 4,2 ),C( 2,-2 ),则△ABC外接圆的方程为为x2+y2-6x+4=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.数学上称函数y=kx+b(k,b∈R,k≠0)为线性函数.对于非线性可导函数f(x),在点x0附近一点x的函数值f(x),可以用如下方法求其近似代替值:f(x)≈f(x0)+f'(x0)(x-x0).利用这一方法,$m=\sqrt{4.001}$的近似代替值(  )
A.大于mB.小于m
C.等于mD.与m的大小关系无法确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知集合A={x|1<x<3},B={x|2m<x<1-m},其中m<$\frac{1}{3}$.
(1)当m=-1时,求A∪B;
(2)若A⊆B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设bn=(2n+1)2n,Tn是数列{bn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.一家商场为了确定营销策略,进行了投入促销费用x和商场实际销售额y的试验,得到如下四组数据.
投入促销费用x(万元)2356
商场实际营销额y(万元)100200300400
(1)求出x,y之间的回归直线方程$\widehaty$=$\widehatb$x+$\widehata$;
(2)若该商场计划营销额不低于600万元,则至少要投入多少万元的促销费用?
(注:$b=\frac{{\sum _{i=1}^n({{x_i}-\bar x})({{y_i}-\bar y})}}{{\sum _{i=1}^n{{({{x_i}-\bar x})}^2}}}=\frac{{\sum _{i=1}^n{x_i}{y_i}-n•\bar x•\bar y}}{{\sum _{i=1}^nx_i^2-n•{{\bar x}^2}}},a=\bar y-b•\bar x$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=4Sn-1.
(1)求{an}的通项公式;
(2)若数列{bn}满足$\frac{{a}_{n}}{{b}_{n}}$=2n-1(n∈N*),设Tn是数列{bn}的前n项和,证明Tn<6.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,梯形ABCD中,AB∥CD,AB=2,CD=4,BC=AD=$\sqrt{5}$,E和F分别为AD与BC的中点,对于常数λ,在梯形ABCD的四条边上恰好有8个不同的点P,使得$\overrightarrow{PE}$•$\overrightarrow{PF}$=λ成立,则实数λ的取值范围是(  )
A.(-$\frac{5}{4}$,-$\frac{9}{20}$)B.(-$\frac{5}{4}$,$\frac{11}{4}$)C.(-$\frac{1}{4}$,$\frac{11}{4}$)D.(-$\frac{9}{20}$,-$\frac{1}{4}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知一三棱柱ABC-A1B1C1各棱长相等,B1在底面ABC上的射影是AC的中点,则异面直线AA1与BC所成角的余弦值为(  )
A.$\frac{\sqrt{7}}{4}$B.$\frac{3}{4}$C.$\frac{1}{3}$D.$\frac{4}{3}$

查看答案和解析>>

同步练习册答案