精英家教网 > 高中数学 > 题目详情
5.数学上称函数y=kx+b(k,b∈R,k≠0)为线性函数.对于非线性可导函数f(x),在点x0附近一点x的函数值f(x),可以用如下方法求其近似代替值:f(x)≈f(x0)+f'(x0)(x-x0).利用这一方法,$m=\sqrt{4.001}$的近似代替值(  )
A.大于mB.小于m
C.等于mD.与m的大小关系无法确定

分析 令f(x)=$\sqrt{x}$,根据定义计算近似值比较大小即可.

解答 解:根据题意,令f(x)=$\sqrt{x}$,则f′(x)=$\frac{1}{2\sqrt{x}}$>0,
取4.001附近的点x0=4,则有m的近似代替值为f(4)+$\frac{1}{2\sqrt{4}}$(4.001-4)=2+$\frac{0.001}{4}$,
∵(2+$\frac{0.001}{4}$)2=4+0.001+($\frac{0.001}{4}$)2>4.001=m2
∴2+$\frac{0.001}{4}$>m.
故选A.

点评 本题考查导数的计算,关键是分析题意,理解“近似代替值”的意义.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.已知集合A={x|log2x>2},$B=\{x|{(\frac{1}{2})^x}≥\frac{1}{16}\}$,则下列结论成立的是(  )
A.A∩B=AB.(∁RA)∩B=AC.A∩(∁RB)=AD.(∁RA)∩(∁RB)=A

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知变量x,y满足约束条件$\left\{\begin{array}{l}{x-y-1≤0}\\{2x-y-3≥0}\end{array}\right.$若目标函数z=ax+2by(a>0,b>0),在该约束条件下的最小值为2,则$\frac{1}{a}$+$\frac{4}{b}$的最小值为(  )
A.7B.8C.9D.不存在

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.三世纪中期,魏晋时期的数学家刘徽首创割圆术,为计算圆周率建立了严密的理论和完善的算法,所谓割圆术,就是用圆内接正多边形的面积去无限逼近圆面积并以此求取圆周率的方法.按照这样的思路,刘徽把圆内接正多边形的面积一直算到了正3072边形,并由此而求得了圆周率为3.1415和 3.1416这两个近似数值.如图所示是利用刘徽的割圆术设计的程序框图,若输出的n=24,则p的值可以是(参考数据:$\sqrt{3}$=1.732,sin15°≈0.2588,sin7.5°≈0.1305,sin3.75°≈0.0654)(  )
A.2.6B.3C.3.1D.3.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设全集U=R,集合M={x|x>1},p={x|x2>1},则下列关系中正确的是(  )
A.M=PB.P?MC.M?PD.(∁UM)∩P=∅

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1,(a>0,b>0)$的左右焦点分别为F1,F2,过右焦点F2的直线交双曲线于A,B两点,连接AF1,BF1.若|AB|=|BF1|,且∠ABF1=90°,则双曲线的离心率为$\sqrt{5-2\sqrt{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.一段长为36m的篱笆围成一个矩形菜园,求这个矩形菜园的最大面积(  )
A.79B.80C.81D.82

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知$sin(x+\frac{π}{3})=\frac{{\sqrt{3}}}{3}$则$sin(\frac{2π}{3}-x)$的值为$\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.过定点M的直线:kx-y+1-2k=0与圆:(x+1)2+(y-5)2=9相切于点N,则|MN|=4.

查看答案和解析>>

同步练习册答案