精英家教网 > 高中数学 > 题目详情
2.已知f(x)为定义在R上的奇函数,当x∈(0,+∞)时,f(x)=2x+1,则当x∈(-∞,0)时,f(x)=-2-x-1.

分析 任取x∈(-∞,0),则-x∈(0,+∞),利用f(x)为定义在R上的奇函数,当x∈(0,+∞)时,f(x)=2x+1,即可得出结论.

解答 解:任取x∈(-∞,0),则-x∈(0,+∞)
∵f(x)为定义在R上的奇函数,当x∈(0,+∞)时,f(x)=2x+1,
∴f(x)=-f(-x)=-2-x-1.
故答案为-2-x-1.

点评 考查利用函数的奇偶性求对称区间上的解析式,是函数奇偶性的一个重要应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.某产品在某零售摊位的零售价y(单位:元)与每天的销售量y(单位:个)的统计资料如表所示,
x16171819
y50344131
由表可得回归方程$\widehat{y}$=$\widehat{a}$-4x,据次模型预测零售价为20元时,每天销售量为(  )
A.26个B.27个C.28个D.29个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若圆C1:x2+y2=m与圆C2:x2+y2-6x-8y+16=0相外切.
(1)求m的值;
(2)若圆C1与x轴的正半轴交于点A,与y轴的正半轴交于点B,P为第三象限内一点且在圆C1上,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知集合A={x|x2+x-6=0},B={x|ax+1=0},若A∪B=A,求实数a的取值组成的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.定义在R上的偶函数满足f(x-1)=f(x+1),且在x∈[-1,0]时,f(x)=($\frac{1}{2}$)x-1.若关于x的方程f(x)-loga(x+1)=0(a>1)在x∈(-1,3]上恰有3个不同的实数根,则实数a的取值范围为(2,4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上每隔1小时抽一包产品,称其重量(单位:克)是否合格,分别做记录,抽查数据如下:
甲车间:102,101,99,98,103,98,99;
乙车间:110,115,90,85,75,115,110.
问:(1)这种抽样是何种抽样方法;
(2)估计甲、乙两车间包装产品的质量的均值与方差,并说明哪个均值的代表性好,哪个车间包装产品的质量较稳定.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等差数列{an}满足:a2=3,a5-2a3+1=0.
(1)求{an}的通项公式;
(2)若数列{bn}满足:{bn}=(-1)nan+n(n∈N*),求{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知集合A={-3},B={x|ax+1=0},若B⊆A,求实数a的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.过点$(2\sqrt{2},0)$直线l与曲线$y=\sqrt{4-{x^2}}$交于A,B两点,O为坐标原点,当△ABO的面积取最大值时,直线l的斜率等于-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案